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We develop new pulse schemes to significantly speed up adiabatic state transfer protocols. Our general
strategy involves adding corrections to an initial control Hamiltonian that harness nonadiabatic transitions.
These corrections define a set of dressed states that the system follows exactly during the state transfer. We
apply this approach to stimulated Raman adiabatic passage protocols and show that a suitable choice of
dressed states allows one to design fast protocols that do not require additional couplings, while
simultaneously minimizing the occupancy of the “intermediate” level.
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Introduction.—The general goal of moving quantum
states between two different systems finds numerous
applications in quantum information processing [1,2]. It
has generated intense theoretical interest, with numerous
approaches developed to allow high fidelity state transfer
that are robust against dissipation and noise. Among the
more powerful and interesting strategies are adiabatic
transfer protocols [3]. These generically involve adiabati-
cally evolving an eigenstate of a composite quantum
system, such that the state is initially localized in the
“source” system and ends up being localized in the “target”
system [see Fig. 1(a)]. The adiabatic evolution thus
corresponds to a state transfer, with the initial state of
the source system “riding” the adiabatic eigenstates, and
ending up in the target system. The most famous examples
of such approaches are the stimulated Raman adiabatic
passage (STIRAP) [4] and coherent tunnelling by adiabatic
passage [5] protocols, well known in atomic physics.
There are two main advantages in using transfer proto-

cols based on adiabatic passage instead of resonant
techniques. First, adiabatic passage is inherently more
robust against pulse area and timing errors. Second, it is
useful in situations where the source and target only interact
via a lossy “intermediate” system, as it allows one to use the
mediated coupling without being harmed by the noise. This
is of particular relevance in optomechanical state transfer
schemes, where a dissipative mechanical resonator is the
intermediate system [6–9].
Despite these advantages, adiabatic schemes are neces-

sarily slow, and hencecan suffer fromdissipation andnoise in
the target and/or source system. Therefore, several
approaches have been put forward to speed up adiabatic
passage [10,11]. Among the known methods, counterdia-
batic control [12], also referred to as transitionless driving
[13], or its higher-order variants [14,15] are analytical
methods that allow one to construct a modification of an
original Hamiltonian to compensate for nonadiabatic errors.
While in principle transitionless driving would allow a
perfect state transfer, it suffers from two major flaws: it
sometimes requires either a direct coupling of the source and

target systems [16–19] or a coupling not available in the
original Hamiltonian [20]. The higher-order variants over-
come the first flaw of transitionless driving, but do not allow
one to control the population in the intermediate system
[14,15]. A related approach based on constructing dynamical
invariants [21] has also been applied to STIRAP, but it leads
to pulse schemes that either need an infinite energy gap to be
perfect [22], or do not smoothly turn on or off [22,23] and are
thus extremely challenging to implement experimentally.
Finally, one could use the general framework of optimal
quantum control [24], but as wewill show there is no need to
use such a complex procedure.
In this Letter, rather than constructing perfect protocols

from scratch, we present an approach that corrects existing
efficient adiabatic protocols such that they allow for a
perfect state transfer even in the nonadiabatic regime.
Moreover, the high flexibility of this approach allows
one to engineer and reduce the population in the inter-
mediate lossy level. The main idea of our approach is
sketched in Fig. 1(b). We work with a basis of dressed
states whose very definition incorporates the nonadiabatic
processes. Then, by introducing additional control fields,
we can ensure these dressed states coincide with the desired
adiabatic eigenstate at the initial and final time of the

(a) (b)

FIG. 1. (a) Schematic of a composite quantum system where
the source and the target systems (qubits in this schematic) are
coupled via some intermediate system. (b) Schematic of the
possible evolutions: (red line) perfect adiabatic evolution; (blue
line) speeding up the evolution results in nonadiabatic errors
leading to an imperfect state transfer; (green line) by dressing the
adiabatic eigenstates it is possible to design an evolution that
leads to a perfect state transfer.
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protocol. It is thus possible to do a state transfer by having
the exact dynamics follow these new dressed states, even if
the protocol is too fast to allow a naive adiabatic evolution.
We illustrate this general idea by developing simple and
effective pulses for speeding up adiabatic state transfer in
generic Λ-system setups.
General problem.—We consider a general composite

quantum system, composed of source, intermediate, and
target subsystems, respectively labeled A, B, and C. The
goal is to transfer some initial quantum state jψi (e.g., a
qubit state) from subsystem A to the target subsystem C.
Adiabatic transfer achieves this goal by constructing a time-
dependent Hamiltonian whose instantaneous eigenstates
evolve in a way that facilitates the transfer. We start by
assuming that one has constructed such a protocol. The
instantaneous eigenstates (hereafter referred to as adiabatic
eigenstates) and corresponding adiabatic energies (both
indexed by k) are defined via

ĤðtÞjφkðtÞi ¼ EkðtÞjφkðtÞi: ð1Þ
A subset of eigenstates has been engineered to form a basis
of the A subsystem at the initial time ti and a basis of the
target system at the final time tf. In other words the
eigenstates fjφmj

ðtÞignj¼0 will serve as “medium” states and
have the following properties:

jφmj
ðtiÞi ¼ jβjiA ⊗ jχiiB;C;

jφmj
ðtfÞi ¼ jχfiA;B ⊗ jγjiC; ð2Þ

where fjβjignj¼0 and fjγjignj¼0 span the subspaces A and C,
respectively. The states jχiiB;C and jχfiA;B are not neces-
sarily equal.
It follows that if the evolution is perfectly adiabatic (i.e.,

happens on a time scale τ ≫ 1=ΔE, where ΔE is the
smallest instantaneous energy gap of the system), the initial
source state will be mapped on the final target state.
However for τ ≲ 1=ΔE, the evolution will not be perfectly
adiabatic. It is convenient to move to the adiabatic frame
where the adiabatic eigenstates are time independent. The
relevant unitary is ÛðtÞ ¼ P

kjφkihφkðtÞj. At each instant
in time, ÛðtÞ maps the adiabatic eigenstate jφkðtÞi onto the
time-independent state jφki. In the adiabatic frame, the
Hamiltonian becomes

ĤadðtÞ ¼ Ĥ0ðtÞ þ ŴðtÞ

¼
X
k

EkðtÞjφkihφkj þ i
dÛðtÞ
dt

Û†ðtÞ: ð3Þ

The operator ŴðtÞ generically has off-diagonal matrix
elements connecting the various adiabatic eigenstates.
The magnitude of these matrix elements increases as τ
decreases, leading to an imperfect state transfer.
Correcting nonadiabatic errors.—In order to correct the

nonadiabatic errors, we look for a correction Hamiltonian
ĤcðtÞ such that the modified Hamiltonian ĤmodðtÞ¼ĤðtÞþ
ĤcðtÞ leads to a perfect state transfer. For this scheme to be

reasonable, we require that ĤmodðtÞ has no unattainably
large coupling strengths and that ĤcðtÞ does not involve
couplings that cannot be experimentally implemented.
Our strategy is based on the observation that the

corrected dynamics only needs to evolve the system from
the correct state at ti to the correct state at tf [cf. Fig. 1(b)].
This suggests a strategy whose crucial ingredients are: (I) a
new basis of dressed states j ~φkðtÞi formally defined by a
time-dependent unitary transformation VðtÞ as

j ~φkðtÞi≡ V̂†ðtÞjφki; ð4Þ
and (II) a control field ĤcðtÞ that is added to the original
Hamiltonian.
The additional control Hamiltonian ĤcðtÞ and dressed-

state basis [i.e., V̂ðtÞ] must be chosen as to satisfy the
following constraints. (i) The dressed medium states
coincide with the medium states at time ti and tf

V̂†ðtfÞjφmj
i ¼ V̂†ðtiÞjφmj

i ¼ jφmj
i: ð5Þ

(ii) For all j, the evolution of j ~φmj
ðtÞi is trivial in the basis

defined by V̂ðtÞ (i.e. j ~φmj
ðtÞih ~φmj

ðtÞj is a conserved
quantity).
If both these conditions are satisfied, then the perfect

desired state transfer will occur. A sketch of the general
idea is shown in Fig. 1(b). Condition (ii) is better defined by
moving in the frame defined by V̂ in which the Hamiltonian
takes the form

ĤnewðtÞ ¼ V̂ĤadðtÞV̂† þ V̂ Û ĤcðtÞÛ†V̂† þ i
dV̂
dt

V̂†: ð6Þ
Wehave omitted the explicit time dependence of Û and V̂ for
clarity. In this new frame the dressed states of Eq. (4) have no
intrinsic time dependence, and condition (ii) becomes

h ~φmj
jĤnewj ~φki ¼ 0 for 1 ≤ k ≤ n; k ≠ mj: ð7Þ

In other words, ĤcðtÞ has to be designed such that it cancels
the unwanted off-diagonal elements in ĤnewðtÞ.
To summarize, the general method involves picking an

appropriate pair of operators ½V̂ðtÞ; ĤcðtÞ�: the unitary V̂ðtÞ
selects a (time-dependent) basis of dressed states, while the
additional control Hamiltonian ĤcðtÞ ensures the correct
dynamics. The net result is that the desired state transfer
dynamics occurs perfectly despite not being in the adia-
batic limit.
Transitionless driving [12–14] is a special case of this

approach and is retrieved by choosing V̂ðtÞ ¼ 1̂ and
Ĥc ¼ −Û†Ŵ Û. The alternative schemes described in
Refs. [14,15] are also recovered from our approach, by
choosing the dressed states as the superadiabatic states
[25–27] (instantaneous eigenstates of Ĥad) or its higher
order counterparts. In what follows, we use our method to
derive truly new protocols.
Application: STIRAP.—We apply our general approach

to the problem of STIRAP [3,4] in a three-level Λ-type
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system. For concreteness, each of the subsystems A, B, and
C are qubits such that A and C only interact with B via the
so-called pump and Stokes pulses (Ωp and ΩS, respec-
tively). The Hamiltonian reads

ĤðtÞ ¼ ΩpðtÞjBihAj þΩSðtÞjBihCj þ H:c: ð8Þ
with jAi ¼ j100i, jBi ¼ j010i, jCi ¼ j001i. The pulses are
parametrized by the frequency ΩðtÞ and the angle θðtÞ
ΩpðtÞ ¼ −ΩðtÞ sin θðtÞ; ΩSðtÞ ¼ ΩðtÞ cos θðtÞ: ð9Þ
The adiabatic eigenstates (see the Supplemental Material
[28]) consist of two “bright” states jφ�ðtÞi with energy
E�ðtÞ ¼ �ΩðtÞ, a “dark” state jφDðtÞiwith EDðtÞ ¼ 0, and
jφ0ðtÞi ¼ j000i with E0ðtÞ ¼ 0. A general adiabatic state
transfer from qubit A to C can be performed using the
medium states

jφDðtÞi ¼ cos θðtÞjAi þ sin θðtÞjCi ð10Þ
and jφ0ðtÞi, which operates a state transfer from jAi to jCi
by using the counterintuitive pulse sequence θðtiÞ ¼ 0 and
θðtfÞ ¼ π=2. As mentioned before, as the protocol time is
reduced, the perfect adiabatic transfer will be more and
more corrupted. This is described by going in the adiabatic
basis where the Hamiltonian (8) becomes

ĤadðtÞ ¼ ΩðtÞM̂z þ _θðtÞM̂y; ð11Þ
where M̂z¼jφþihφþj−jφ−ihφ−j, M̂x¼ðjφ−i−jφþiÞhφDj=ffiffiffi
2

p þH:c:, and M̂y ¼ iðjφþi þ jφ−iÞhφDj=
ffiffiffi
2

p þ H:c: are
spin 1 operators, obeying the commutation relation
½Mp;Mq� ¼ iεpqrMr. The second term of the adiabatic
Hamiltonian (11) corresponds to the nonadiabatic cou-
plings coming from the inertial term in Eq. (3).
Thanks to the analogy between the adiabatic

Hamiltonian (11) and a spin 1 in a magnetic field,
ingredient (I) (i.e., the construction of dressed states) of
our approach can be parametrized as a rotation of the spin
with Euler angles ξðtÞ, μðtÞ, and ηðtÞ

V̂g ¼ exp ½iηðtÞM̂z� exp ½iμðtÞM̂x� exp ½iξðtÞM̂z�: ð12Þ
In order to satisfy condition (i), the angle μðtÞ has to satisfy
μðtiÞ ¼ μðtfÞ ¼ 0ð2πÞ and the two other angles can have
arbitrary values. It can be shown that by choosing the
ingredient (II) of our method to have the general form

ĤcðtÞ ¼ Û†
adðtÞðgxðtÞM̂x þ gzðtÞM̂zÞÛadðtÞ ð13Þ

we find a control Hamiltonian Ĥc that does not directly
couple the states jAi and jCi. The corrected protocol will
consist in a simple modification of the original STIRAP
angle and amplitude

θðtÞ → ~θðtÞ ¼ θðtÞ − arctan

�
gxðtÞ

ΩðtÞ þ gzðtÞ
�
; ð14Þ

ΩðtÞ → ~ΩðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩðtÞ þ gzðtÞÞ2 þ g2xðtÞ

q
: ð15Þ

Moreover, in order to satisfy Eq. (7), the control parameters
have to be chosen as

gxðtÞ ¼
_μ

cos ξ
− _θ tan ξ; ð16Þ

gzðtÞ ¼ −Ωþ _ξþ _μ sin ξ − _θ

tan μ cos ξ
; ð17Þ

and are independent of ηðtÞ. Within our framework, it can
be shown that the population in the intermediate level jBi is
given by

jhψðtÞjBij2 ¼ sin2μðtÞcos2ξðtÞ: ð18Þ
From now on, in order to keep the discussion simple, we
focus on the ξðtÞ ¼ 0 case.
Application to Vitanov-style pulses.—We apply these

dressed-state protocols to the optimal STIRAP pulses
discussed by Vitanov et al. in Ref. [29] and defined by

ΩðtÞ ¼ Ω0; θðtÞ ¼ π

2

1

1þ e−t=τ
; ð19Þ

where the time scale τ controls the effective duration of the
protocol. The simplest nontrivial choice of the dressed-
states basis is the superadiabatic basis, for which

μ ¼ − arctan

�
_θðtÞ
ΩðtÞ

�
; gxðtÞ ¼ _μ; gzðtÞ ¼ 0: ð20Þ

This choice will be referred to as superadiabatic transition-
less driving (SATD). With this choice the only way to
reduce the population in the intermediate level [cf. Eq. (18)]
is to decrease the magnitude of _θðtÞ, and hence slow down
the protocol (i.e., longer τ). Interestingly, SATD represents
a nonperturbative version of the derivative removal by
adiabatic gate approach to leakage errors [30,31] applied to
this problem (see the Supplemental Material [28]).
Our approach allows one to construct alternatives to

SATD (based on alternate dressed states) that reduce the
intermediate-level occupancy. This can be extremely ben-
eficial in systems where the intermediate state is lossy, but
where adiabatic evolution is impossible, as the protocol
must be fast to avoid dissipation of the source and/or target
system, or because of slow drifts of system parameters. A
concrete example with all these features is optomechanical
state transfer [6–9]. By generalizing Eq. (20) to

μ ¼ − arctan

�
_θðtÞ

fðtÞΩðtÞ
�
; gxðtÞ ¼ _μ;

gzðtÞ ¼ −Ω −
_θðtÞ
tan μ

ð21Þ

we can chose the auxiliary function fðtÞ to reduce μ
(and hence the amount of state dressing) to avoid unnec-
essary B-state population. Here, we choose to consider the
simple class of functions fðtÞ¼1þAexpð−t2=T2Þ
[fðtÞ ≥ 1 ∀ t] with A > 0 and T > 0 two parameters
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that can be optimized for each τ to minimize the population
in B. As we show below, this intuitive and physically
motivated choice allows for a sizeable reduction of the
occupancy of the intermediate level without having to rely
on more complex methods (e.g., control theory).
To compare protocols, we look at the relevant case where

the fidelity is limited both by a nonzero τ in Eq. (19) and by
the protocol starting and ending at a finite time. In theory,
the protocol should start at ti ¼ −∞ and end at tf ¼ þ∞ in
order to achieve the requirement θðtiÞ ¼ 0, θðtfÞ ¼ π=2,
and μðtiÞ ¼ μðtfÞ ¼ 0ð2πÞ. To simulate pulses with a finite
duration, we have chosen tf ¼ −ti ¼ 15τ such that
ΩpðtiÞ ¼ ΩSðtfÞ < 10−6Ω0. With our choices of correc-
tion, the shorter the protocol time is, the bigger the
amplitude ~Ωðt; τÞ is. We consider the case where each
corrected pulse cannot exceed its original maximal
amplitude Ω0fmaxt½ ~Ωðt;τÞsin ~θðt;τÞ; ~Ωðt;τÞcos ~θðt;τÞ�≤
Ω0; ∀tg. This constraint implies that we can only correct
protocols with an effective protocol time τ > τmin≃
1=2.63Ω0.

ε ¼ 1 − F ¼ 1 − jChψðtfÞjψðtiÞiAj2: ð22Þ
Since we are interested in a qubit state transfer and j000i
has a trivial dynamics, only the transfer of state jAi to jCi
gives rise to errors. Thus, we plot the fidelity for trans-
ferring the jAi state only, which sets an upper bound for the
error when transferring a superposition of an arbitrary qubit
state (see the Supplemental Material [28]). In Fig. 2(a), we
plot the residual error ε as a function of τ for SATD
[Eq. (20)] and the modified SATD [Eq. (21)] with opti-
mized parameters. Both choices reduce the residual error by
the same amount and lead to a several orders of magnitude
reduction as compared to the protocol defined by Eq. (19).
The oscillatory behavior is a direct consequence of having
finite-time pulses (see the Supplemental Material [28]).
To illustrate the additional advantage of our choice of

correction, we consider the time integral over the full
protocol duration of the population in jBi. In Fig. 2(b), we
plot this quantity for both SATD and the modified SATD:
the integrated population is reduced between ≈21% −
25.5% with the modified SATD [Eq. (21)] as compared
to SATD [Eq. (20)]. In Figs. 2(c) and (d), we plot the
corrected pump pulse for SATD and the modified SATD for
different values of τ. The Stokes pulse is the symmetric
reflection of the pump pulse with respect to ðtf − tiÞ=2. The
SATD pulses rapidly converge to the Vitanov style pulses
[Eq. (19)] when τ increases, while the modified SATD
pulses converge more slowly. This is due to the fact that the
modified SATD pulses have been designed not only to
reduce the residual error, but also to reduce the population
in the mechanics, which slowly converges to 0 as τ → ∞.
Application to Gaussian pulses.—An additional advan-

tage of our approach is that it allows one to correct
protocols for which the correction (20) does not work.

In particular, the most common approach to STIRAP uses
Gaussian pulses [3,4] ΩpðtÞ ¼ Ω0 exp½−ðt − t0=2Þ2=τ2�
and ΩSðtÞ ¼ Ω0 exp½−ðtþ t0=2Þ2=τ2� with t0 the delay
time between the two pulses. Using the parametrization
defined in Eq. (9), we have

θðtÞ ¼ arctan ½expð2tt0=τ2Þ�;

ΩðtÞ ¼ Ω0 exp

�
−
t2 þ t20=4

τ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosh ðtt0=τ2Þ

q
: ð23Þ

For this particular case, we cannot use the SATD pre-
scription to construct a control Hamiltonian as the con-
dition μðtiÞ ¼ μðtfÞ ¼ 0ð2πÞ is not satisfied (for this choice
of pulse _θðtÞ=ΩðtÞ → þ∞ as t → �∞). However, our
dressed state approach allows one to find a control
Hamiltonian using Eq. (17) (ξ ¼ 0) and

μðtÞ ¼ − arctan

�
_θðtÞ

gðtÞ=τ þ ΩðtÞ
�
: ð24Þ

Here, gðtÞ=τ is used to regularize μðtÞ: it has to be chosen
such that it tends to zero at ti and tf slower than _θ. In Fig. 3,
we have plotted the residual error for STIRAP with
Gaussian densities [Eq. (23)] and for the modified
SATD [Eq. (24)]. We have chosen t0 ¼ 6=5τ and gðtÞ ¼
A= cosh ζt with A ¼ 1=40 and ζ ¼ 9=10τ, which gives
τmin ≈ 1=1.27Ω0. Under the condition ΩpðtiÞ ¼ ΩSðtfÞ <

FIG. 2. (a) Comparison of the residual error between STIRAP
[Eq. (19)], SATD [Eq. (20)], and the modified SATD [Eq. (21)] as
a function of the effective protocol duration τ in units of τmin.
(b) Comparison of the integrated population in jBi over the whole
protocol time between SATD [Eq. (20)] and our new dressed state
approach [Eq. (21)] as a function of τ in units of τmin. Inset: ratio
of those two quantities. The integrated population is reduced by at
least 21% and at most 26% with our new protocol. Plot of the
corrected pump pulse for SATD (c) and the modified SATD
(d) for different values of τ as a function of time ðt − tiÞ in units of
the total protocol time ðtf − tiÞ.
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10−6Ω0, we have tf ¼ −ti ¼ 6τ. This new pulse scheme
leads to a reduction of the residual error by several orders of
magnitude [see Fig. 3(a)] in the nonadiabatic regime while
SATD [Eq. (20)] fails. In Fig. 3(b), we plot the corrected
pump pulse for different values of τ. The Stokes pulse is the
symmetric reflection of the pump pulse with respect
to ðΩp; tÞ ¼ ½0; ðtf − tiÞ=2�.
Conclusion.—We have developed a general method to

achieve a perfect state transfer between two quantum
systems coupled via an intermediate lossy system. In
contrast to previous schemes, our approach is both physi-
cally transparent and extremely flexible, allowing applica-
tion to a wide variety of realistic experimental situations.
In future work, it could be interesting to investigate the

resilience of the generated pulse sequences with respect to
experimental imperfections of the system and of the control
fields as in Refs. [32,33]. It would also be interesting to
investigate the implementation of our method in more
complicated systems, where analytical diagonalization is
not possible. In particular one could study perturbative
variants of our approach as well as numerical diagonaliza-
tion allowing one to look for transitionless driving and
higher order variants corrections [13–15].
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