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Many experimental setups in quantum physics use pseudorandomness in places where the theory
requires randomness. In this Letter we show that the use of pseudorandomness instead of proper
randomness in quantum setups has potentially observable consequences. First, we present a new loophole
for Bell-like experiments: if some of the parties choose their measurements pseudorandomly, then the
computational resources of the local model have to be limited in order to have a proper observation of
nonlocality. Second, we show that no amount of pseudorandomness is enough to produce a mixed state by

computably choosing pure states from some basis.
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A ubiquitous scenario in experimental labs nowadays
consists of classical computers monitoring quantum setups.
This also includes commercial applications of quantum
technologies, such as, e.g., quantum key distribution
protocols, where computers control the preparation and
measurements of quantum states.

A classical computer, however, is not an arbitrary device;
it is as powerful as the standard formal model of Turing
machines [1]. A natural question is whether this fact has
any consequence in the physics that will be observed in
experimental setups controlled by computers. The main
purpose of this Letter is to study this general question in the
context of randomness generation. In fact, it is a very well-
known result that classical computers are unable to produce
randomness. On the other hand, nowadays there are
efficient algorithms [2,3] that produce “seemingly random”
binary sequences, with excellent statistical properties. Our
goal is to understand whether the use of algorithmic sources
of pseudorandomness instead of ideal randomness has any
observational consequences.

Our main result is to identify two situations in which the
use of pseudorandomness has observational consequences.
First, we show that, when it comes to Bell-like experiments
[4-6] to test nonlocality, if the measurement independence
between the two parties [7-10] is achieved via private
pseudorandom number generators, it is possible to con-
struct a local model that leads to an observed violation of
Bell inequalities. Second, we show that pseudorandomness
is not enough to produce a mixed state as a classical
mixture of pure quantum states. In other words, we show
that if in a setup used to produce a proper mixed state as a
classical mixture of pure quantum states, we replace the
random source by a pseudorandom one, situations that
initially were not distinguishable turn out to be so. This has
direct implications for experimental setups since mixed
states are commonly prepared in this way [11,12].
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Bell computability loophole.—Nonlocality is one of the
most intriguing features of quantum mechanics [4,6]. The
standard Bell scenario is described by n distant observers
who can perform m possible measurements of r possible
results or outputs. The measurements are arranged so that
they define spacelike separated events. For the sake of
simplicity, we focus our attention on the standard bipartite
2-input 2-output scenario [13], although our considerations
apply to any Bell scenario.

It is convenient for what follows to rephrase the standard
Bell scenario in cryptographic terms, as in [14—16]. In this
approach, Alice and Bob get the devices from a nontrusted
provider Eve. The standard local models correspond to
classical preparations in which the devices generate the
measurement results given the choice of measurements
following a deterministic assignment depending on pos-
sibly correlated classical instructions, but independently of
the input chosen by the other party. Bell inequalities are
conditions satisfied by all these preparations, even when
access is given to all the measurement choices and results
produced in previous steps [14]. In turn, quantum corre-
lations, obtained, for example, by measuring a maximally
entangled two-qubit state with noncommuting measure-
ments, can violate these inequalities. The violation of a Bell
inequality witnesses the existence of nonlocal correlations.
In turn, this can be used by Alice and Bob to certify the
nonclassical nature of their devices. This cryptographic
approach to Bell tests makes it easy to understand the
implications of our results for device-independent protocols
based on nonlocality. But our results also apply to the
standard context in which Bell inequalities were intro-
duced, namely on the discussion about the possible
existence of a local model explaining quantum correlations
[4,6]. There, the local model can be seen as the eaves-
dropper that tries to reproduce the observed correlations,
possibly by exploiting loopholes in the implementation.
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A crucial condition to derive any Bell inequality is that
the measurement choices by Alice and Bob are random, in
the sense of not being predictable by Eve, or the local
model, at the moment of preparing the devices. In fact, if
this condition is not met and the eavesdropper knows the
measurement choices in advance, she can prepare by
classical means any form of correlations between Alice
and Bob, in particular not bounded by any Bell inequality.
In what follows, we consider the scenario in which
pseudorandomness is used to choose the measurement
settings in a Bell test. We show that if at least one of
the parties chooses the measurements following an algo-
rithm, this gives rise to a new loophole, which we call the
computability loophole, even under the assumption that the
algorithm is independent of the boxes Eve prepares, and all
she knows about the algorithm is an upper bound on its run
time. For this loophole to apply, the boxes prepared by Eve
have to communicate the inputs used in the previous rounds
[14-16], as shown in Fig. 1. The main intuition is that if
Eve, or more precisely the devices she prepared, is able at
some point to learn the algorithm generating the inputs, she
could use this information to produce a fake Bell violation.

Let us assume that one party, say Alice without loss of
generality, uses an algorithm to choose her inputs. In formal
terms, this means that there is a computable function
fa:N > {0,1} such that f,(i) tells Alice to press the
left (0) or the right (1) button at the ith round.

It is clear that if Eve knows (any algorithm for) f,4, her
task becomes trivial. Hence, we assume f, is unknown to
Eve when she prepared the boxes. Eve does not know either
which party is using the function f, to choose the inputs.
However, we will assume the following further hypothesis:
Eve knows some computable function ¢ which upper
bounds the running time needed to compute f,. For
instance, Eve knows that f, is computable in, say, time
O(t(n)), for t(n) = 2%'—though the algorithm that Alice is
actually running may take, say, O(n?).

Knowing this time bound ¢ will allow Eve to program a
computing device in one of the boxes, say Alice’s, which

FIG. 1. Scheme for the Bell inequality computability loophole.
After each round i, Alice’s box receives Bob’s last choice of
measurement y;. Using all previous choices of inputs for both
parties, Alice’s box makes a prediction for what the inputs of the
next round will be by using the presented algorithm.

will be able to predict f, after finitely many rounds. This
means that Alice’s box will have an effective procedure
that, after having seen f4(0), f4(1),...,fa(k) for large
enough k, will allow it to correctly guess f,(k+ 1),
falk+2),.... The existence of such k will be guaranteed
by construction; however, Alice’s device will not be able to
tell when this k has arrived.

The idea behind this is a standard result from computer
science: algorithms whose running time is upper bounded
by some computable function ¢ can be enumerated in a
computable fashion (see the Supplemental Material [17]).
Using such an enumeration, Alice’s device will pick at
every round k the first algorithm whose output coincides
with £4(0), ..., f4(k — 1) and use it to predict f, (k). Since,
by assumption, the algorithm used by Alice will be
eventually enumerated, choosing in this way, Eve is
guaranteed to converge, after finitely many rounds, to an
algorithm for f, (maybe not the same as Alice’s) and
hence, start correctly guessing Alice’s inputs. See Fig. 2 for
a schematic description of the guessing protocol and the
Supplemental Material [17] for the formalization.

At this point, we can further clarify the need to assume a
bound on the complexity of f4. As we saw, the loophole is
based on the ability to program a predictor (in the sense
described above) for functions belonging to a given class. It
is a basic result in computability theory that the class of all
computable functions is not predictable [18]. We could
have chosen other ways to restrict the class of functions, but
computational resources seemed to be rather natural.

Despite being necessary for the protocol, one can
justify the time complexity assumption on the following
grounds:

(1) It is natural to require that the time Alice and Bob take
to choose their measurements on each round is bounded.

(2) The number of computational steps per second that a
physical system of mass m can perform is upper bounded
by 2(mc?)/xh [19].

These two facts imply that the number of computational
steps that Alice’s and Bob’s algorithms can take on each

Seen bits:

s = 0 0 0 0 0 0 O
s = 0 0 1 1 0 1 1
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FIG. 2. Suppose {s;};e is a (computable) enumeration of the
algorithms which run in O(r) time. After seeing f(0) =1,
f(1) =0, and f(2) = 1, the guess for f(3) will be done with
the first algorithm whose outputs match those values (in the
example, s4.)
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round n is bounded by a constant and hence, their
computational complexity is, at most, linear in n (and,
so, exponential in |n|, the size of n).

Eve is able to prepare both boxes so as to fake a Bell
inequality violation. To see how, notice that any no-
signaling bipartite probability distribution, local or not,
can always be written as

P(a,b|x,y) =/P(/1)5;()(./1)‘SZ(y,x,/l)CML

_ / b a
= /P (1)5]"(;"&)55%(&»1)6[/1’

where again functions f, f’, g, ¢ are deterministic
functions. This means that, given that Eve learns either
Alice’s input x or Bob’s input y, she can prepare deter-
ministic (local) boxes to simulate any probability distribu-
tion and hence fake any Bell violation.

Regarding the complexity of Eve’s protocol, there are
two measures that one can study. First, there is the number
T of time steps that it takes Alice’s box to make a guess:
if Eve assumes an upper bound of #(n) for the running time
of Alice’s algorithm, then 7 = O(t(n) log[z(n)]) [for t(n)
time constructible, see Sec. 1.3 in [20] ]. Second, there is
the number M of mistakes that Alice’s box will make
before starting to guess correctly. Using the halving
algorithm of Barzdin and Freivalds (see [21] [Theorem
6]), the learning process can be carried out in such a way
that M < O(max (/,1og(c))), where [ is the length of
Alice’s algorithm and c is such that it runs in time c#(n).

This means that Eve will not require too many rounds, in
terms of [ and c, to fake nonlocality. That is, if we look at
the distribution generated in the first n rounds, the fraction
of inputs-outputs that will not serve Eve’s purpose of faking
a nonlocal distribution is upper bounded by M /n, which
vanishes with increasing n. So, if Alice wants to make this
number of rounds large, then she either has to use a very
long program or an enormous time constant.

It is relevant to place these considerations in the context
of recent “loophole-free” Bell experiments [22—24]. In all
these experiments the choice of measurements was per-
formed using the fast quantum random-number generator
of [25]. Thus, assuming the validity of quantum physics,
these experiments are free from the computability loophole
introduced here. However, one may argue that it is rather
undesirable, and even circular, to depend on the validity of
a nonlocal theory, such as quantum physics, to test non-
locality. The use of random numbers of quantum origin is
better justified in device-independent protocols based on
nonlocality, as the validity of quantum physics is assumed
for many of them.

Pseudorandom mixtures.—Our second result concerns
preparations of mixtures of quantum states using pseudor-
andomness. Let us consider the following game: Alice
has access to a computer in an unknown configuration

and with unbounded memory that is running a presumably
very convoluted unknown algorithm to generate a pseu-
dorandom sequence of bits. Alice encodes the generated
bits into quantum states, either on the single qubit eigen-
states of o_, {|0),|1)}, or the eigenstates of o, |£) =
(1/+/2)(]0) £ |1)). The choice of basis is made by Alice at
the beginning of the protocol and kept fixed. The resulting
qubit states are sent to Bob as seen in Fig. 3. Bob’s goal is
to guess the basis used by Alice to encode the sequence.

Alice’s algorithm is completely unknown. Hence, after
having seen only finitely many qubits, Bob has no a priori
reason to favor any of the two alternatives for the next
qubit. Bob could be tempted to assign uniform probability
to these events and thus characterize the situation with
the maximally mixed state p = I/2, consequently giving
undistinguishable situations for the o, and o, preparations.
This is in fact what the theory predicts if the preparation is
properly random.

In the following, however, we show that the fact that the
preparation procedure was performed in a computable way
leaves a trace which allows us to distinguish both situations
in finite time and with arbitrarily high success probability.
This implies that characterizing Bob’s lack of knowledge
about the state of the systems coming out of the box with
p = I/2 is incorrect. It is worth mentioning that having a
computer mixing the state does not imply that the sequence
used to prepare the state is periodic. In fact, there exist
computable sequences which not only avoid periodicity
but also have good randomness properties; we can mention,
for instance, Borel normal sequences or polynomial-time
random sequences [3].

The measurement strategy allowing Bob to make a
correct guess works as follows. Bob measures every qubit
that comes out of the black box on an odd position in the
basis of eigenstates of ¢, and every qubit that comes out on
an even position in the basis of eigenstates of o, yielding
two binary sequences of measurement results Z and X,
respectively, as can be seen in Fig. 3. The one correspond-
ing to the choice of measurement that matches the
preparation basis is computable, and the other one corre-
sponds to a fair coin tossing, according to quantum

Z
[TTTTT
toA AANAKNAR
10y |1) QJO> |1) [0) [0) ppp ppr P
Alice | Bob
FIG. 3. Alice uses a computer to choose between |0) and |1) (or

|+) and |-)), keeping the basis fixed all through the experiment.
To distinguish both possible preparations, Bob measures alter-
natively o, and o, and feeds the resulting sequences to a
computer executing Algorithm 1.
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mechanics. Therefore, we need an algorithm that given two
sequences, one being computable and one arising from a
fair coin tossing, is able to tell us which is which in finite
time and with an arbitrarily high probability of success.
Contrary to the previous situation, our result is to show that
this algorithm exists.

To distinguish which of the two sequences is computable
we borrow some tools from the theory of algorithmic
randomness [26-28]. Roughly, an infinite binary sequence
is random in an algorithmic sense, if it lacks any regularity.
Randomness tests, also called Martin-Lof tests, are defined
to detect some specific regularity. Therefore, a sequence is
algorithmically random if it fails every possible Martin-Lof
test. This “detection” of nonrandom sequences should be
computably approximable, with incrementing levels of
accuracy or significance. At level m of significance, a
given test V describes a set of possible prefixes of
sequences that do not look random (namely, a set V).
As we move on with the level of significance m, each test
rules out more sequences leaving in the limit a null measure
set of nonrandom sequences. The algorithmically random
sequences are those ruled out by every possible Martin-
Lof test.

Formally, a Martin-Lof test (ML test) is a sequence
(Vo) men Of sets of binary strings with two properties:

(1) Effectiveness.—There is a program that given m and
i, produces the ith string of V,, (notice that in general there
are infinitely many strings in V). It is not possible to
computably determine if a string is not in V,, but we can
computably enumerate all strings that are in.

(2) Null class.—If A is a set of binary strings, then [A] is
defined as the set of infinite sequences with prefixes in A.
If 4 is the uniform measure on the space of infinite
binary sequences, each ML test (V,,),.cy should satisfy
AV, <27m

Let Y be an infinite sequence. Y is ML random if no test
(V) men can capture Y in all its levels of accuracy, that is if
for no test (V,,),,en We have Y € (),,[V,,]. Informally, if
Y € [V,,] then we reject the hypothesis that Y is random
with significance level 27

Let Y | n denote the prefix of length n of the sequence Y.
Observe that if Y € [{o}, 05, ...}], then for large enough n
we have that all the infinite sequences extending Y | n
belong to [{oy, ...,0,}]. This last expression can be seen
as the nth approximation of [{s,0,,...}]. Hence, if
Y € (,u[V,], then for every m there is n such that any
extension of Y | n is included in the nth approximation
of [V,].

It is well known that there is an universal ML test
(U) men such that ¥ is ML random iff ¥ ¢ (,,[U,,]. Since
AN plUn] =0, the set of ML random sequences has
measure 1. In other words, the output of a fair coin tossing
forms a ML random sequence with probability 1. On the
other hand, the universal test (U,,),,ey detects any effective
pattern. In particular, any computable sequence fails it.

We return to the protocol that Bob follows to distinguish
the computable sequence from the random (coin tossing)
one: given a significance level 27, he starts enumerating
all the stings in U,, = {0,065, ...} until he finds some n
such that for Y = X or Y = Z we have that all extensions of
Y | n belong to [{oy,...,0,}].

Since either X or Z is computable, the last condition has
to be satisfied for sufficiently large n. If the above condition
was first satisfied by ¥ = X, he claims that X is the
computable sequence and that Y is the random one; if
the above condition was first satisfied by ¥ = Z he claims
that Z is the computable sequence and that X is the random
one. This decision is wrong when the random sequence was
captured by [V/,,] before the computable one was (of course,
for some m’ > m the random sequence would be out of
[V,»]). Hence, the probability of making this error is at most
the probability for the coin tossing sequence to be inside
[V,.], and this is at most 27",

Observe that in the above protocol there is nothing
special with one of the sequences being computable. All
that matters is that one of the sequences is not ML random.
To study the effect of noise on the previous algorithm we
considered a simple noise model described by a flip
probability less than 1/2 in the observed symbols. This
means that Bob does not receive the computable sequence
Y, but a sequence Y XOR N, where the XOR is taken bitwise
and N, the noise sequence, is an infinite sequence such that
the limit relative frequency of the symbol O is strictly
greater than the expected value, i.e.,

NG = 1
limsupM< 1/2.
n n

This means an error ratio of strictly less than 1/2. It can be
shown that N is not ML random, and that if ¥ is computable
then Y XOR N is also not ML random. Now, Bob can apply
the same protocol as above to distinguish ¥ XOR N, which
is not ML random, from the one coming from the coin
tossing.

The existence of the described distinguishing protocol
proves that, if one uses a pseudorandom source instead of a
random one to produce a classical mixture of pure states
described by p, the resulting situation cannot be described
by the same state p. On the down side, and although the
specifics depend on the particular implementation of the
universal test, the procedure is far from being efficient.
However, for practical demonstrations, it is not difficult to
see that by restricting Alice’s class of algorithms, one can
design efficient specific tests for Bob in the same spirit as
the given above.

Discussion.—In this Letter, we presented two conse-
quences of replacing randomness with pseudorandomness
in quantum theory. First, we showed that if either Alice or
Bob choose the inputs for a Bell experiment in a comput-
able way, an eavesdropper preparing deterministic devices

230402-4



PRL 116, 230402 (2016)

PHYSICAL REVIEW LETTERS

week ending
10 JUNE 2016

can make them believe they have nonlocal boxes, thus
creating a loophole. For the loophole to apply, the boxes
should communicate between rounds and adapt accord-
ingly, as, for instance, studied in the context of the memory
loophole [15,16]. There is no way of preventing this form
of communication, unless some assumptions regarding the
shielding of the devices are enforced, or by imposing that
all the measurements in the Bell test by one of the parties
are spacelike separated from those by the other party.

Second, we showed that if Alice uses a computer to
prepare a seemingly proper mixture of |0) and |1) or a
seemingly proper mixture of |+) and |-), Bob can
distinguish both situations with arbitrarily high probability
and without any access to Alice’s algorithm. Our algorithm,
although impractical, fulfils its purpose of showing that
both preparations are indeed distinguishable. Our results
imply that it is incorrect to model Bob’s lack of knowledge
in this scenario with independent copies of the maximally
mixed state. They apply to, for instance, the mixed states
experimentally produced using a classical random number
generator [11,12].
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