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Many systems are naturally represented by a multilayer network in which edges exist in multiple layers
that encode different, but potentially related, types of interactions, and it is important to understand
limitations on the detectability of community structure in these networks. Using random matrix theory, we
analyze detectability limitations for multilayer (specifically, multiplex) stochastic block models (SBMs) in
which L layers are derived from a common SBM. We study the effect of layer aggregation on detectability
for several aggregation methods, including summation of the layers’ adjacency matrices for which we show
the detectability limit vanishes as OðL−1=2Þ with increasing number of layers, L. Importantly, we find a
similar scaling behavior when the summation is thresholded at an optimal value, providing insight into the
common—but not well understood—practice of thresholding pairwise-interaction data to obtain sparse
network representations.
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The analysis of complex networks [1] has far-reaching
applications ranging from social systems [2] to the brain
[3]. Often, the system is a multilayer network (see reviews
[4,5]), whereby network layers encode different classes of
interactions, such as categorical social ties [6], types of
critical infrastructure [7], or a network at different instances
in time [8]. In principle, the multilayer framework offers a
more comprehensive representation of a data set or system,
as compared to an aggregation of layers that produces a
simplified model but does so at the cost of information loss.
For example, neglecting the layered structure can lead to
severe and unintended consequences regarding structure [9]
and dynamics [10–12], which can fundamentally differ
between single-layer and multilayer networks [13,14].
However, layer aggregation also implements an infor-

mation processing that can be beneficial. Network layers
are often correlated with one another and can encode
redundant information [15]. In some cases a multilayer
representation is an over-modeling, which can negatively
impact the computational and memory requirements for
storage and analysis. In such situations, it is beneficial to
seek a more concise representation in which certain layers
are aggregated [16,17]. Identifying sets of repetitive layers
amounts to a clustering problem, and it is closely related to
the topic of clustering networks in an ensemble [17,18].
Much remains to be studied regarding when layer aggre-
gation is appropriate and how it should be implemented.
We study the effect of layer aggregation on community

structure in multilayer networks with layers drawn from a
common stochastic block model (SBM). SBMs are a
paradigmatic model [19] for complex structure in networks
and are particularly useful for studying limitations on

detectability—that is, if the community structure is too
weak, it cannot be found upon inspection of the network
[20–25]. Recently, the detectability limit has been explored
for networks with degree heterogeneity [26] and hierar-
chical structure [27,28], for temporal networks [29], and for
the detection of communities using multiresolution meth-
ods [30]. Despite growing interest in multilayer SBMs
[31–35] (which we note, focus on multiplex networks in
which nodes are identical in every layer and edges are
restricted to connecting nodes in the same layer [4,5]), the
effect of layer aggregation on detectability limitations has
yet to be explored outside the infinite layer limit [35].
To this end,we studydetectability limitations formultilayer

SBMs with layers following a single SBM and find layer
aggregation to significantly influence detectability. When the
aggregate network corresponds to the summation of the
adjacency matrices encoding the network layers, aggregation
always improves detectability. Thedetectability limit vanishes
with increasing number of layers,L, and decays asOðL−1=2Þ.
Because the summation of L adjacency matrices can often
yield a weighted and dense network—which increases the
complexity of community detection [36]—we also study
binary adjacency matrices obtained by thresholding this
summation at some value ~L. We find that the detectability
limit is very sensitive to the choice of ~L and that there exist
thresholds (e.g., mean edge probability for homogeneous
communities) that are optimal in that the detectability limit
also decays as OðL−1=2Þ. These results provide insight into
the use of thresholding pairwise-interaction data to construct
sparse networks—a practice that is commonplace but for
which the effects are not well understood.
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We begin by describing the multilayer SBM. We con-
sider N nodes divided into K communities, and we denote
by ci ∈ f1;…; Kg the community index for each node
i ∈ f1;…; Ng. The multiplex network is defined by L
layers encoded by a set of adjacency matrices, fAðlÞg,
where AðlÞ

ij ¼ 1 if ði; jÞ is an edge in layer l and AðlÞ
ij ¼ 0

otherwise. The probability of edge ði; jÞ in layer l is given
by Πcicj ∈ ½0; 1�, where Π is a K × K matrix.
The detectability of community structure relates to the

ability to recover the nodes’ community labels fcig. To
connect with previous research [21,23–25], we focus on the
case of K ¼ 2 communities of equal size with edge
probabilities Π11 ¼ Π22 ¼ pin and Π12 ¼ Π21 ¼ pout.
Below, we will simultaneously refer to these respective
probabilities as pin;out. We assume pin ≥ pout to study
“assortative” communities in which there is a prevalence
of edges between nodes in the same community [37].
It has been shown for the large network N → ∞ limit

that there exists a detectability limit characterized [23,24]
by the solution curve ðΔ�; ρÞ to

NΔ ¼
ffiffiffiffiffiffiffiffiffi
4Nρ

p
; ð1Þ

where Δ ¼ pin − pout is the difference in probability and
ρ ¼ ðpin þ poutÞ=2 is the mean edge probability. For given
ρ, the communities are detectable only when the presence
of community structure is sufficiently strong, i.e., Δ > Δ�.
Equation (1) describes a phase transition that has been
obtained via complementary analyses—Bayesian inference
[23] and random matrix theory [24]—and represents a
critical point that is independent of the community detec-
tion method (see [23] and footnote 11 in [24]). We further
note that Eq. (1) was derived for sparse networks [i.e.,
constant ρN so that ρ ¼ OðN−1Þ]. Here, we must consider
the full range of densities, ρ ∈ ½0; 1�, to allow for aggre-
gated networks that are potentially dense [i.e., ρ ¼ Oð1Þ
as N → ∞].
In this Letter, we study the behavior ofΔ� for twomethods

of aggregating layers. We define the summation network
corresponding to the weighted adjacency matrix Ā ¼P

lA
ðlÞ as well as a family of thresholded networks with

unweighted adjacency matrices fÂð ~LÞg that are obtained by
applying a threshold ~L ∈ f1;…; Lg to the entries of Ā.

Specifically, we define Âð ~LÞ
ij ¼ 1 if Āij ≥ ~L and Âð ~LÞ

ij ¼ 0

otherwise. Of particular interest are the limiting cases ~L ¼ L
and ~L ¼ 1, which respectively correspond to applying
logical AND and OR operations to the original multiplex

data fAðlÞ
ij g for fixed ði; jÞ. We refer to these thresholded

networks as the AND and OR networks, respectively.
We study the detectability limit for the layer-aggregated

networks using random matrix theory [38,39]. This
approach is particularly suited for detectability analysis
since community labels fcig can be identified using spectral

partitioning and phase transitions [24,27,28] in detectability
correspond to the disappearance of gaps between isolated
eigenvalues (whose corresponding eigenvectors reflect
community structure) and bulk eigenvalues [which arise
due to stochasticity and whoseN → ∞ limiting distribution
is given by a spectral densityPðλÞ].We develop theory based
on the modularity matrix B̄ij ¼ Āij − ρL [40]. Note that we
do not use the configuration model as the null model.
Instead, since all nodes are identical under the SBM, the
appropriate null model is Erdős-Rényi with repeated edges
allowed in which so that the expected number of edges
between any pair of nodes is ρL.
We first study Δ� for the summation network. We

analyze the distribution of real eigenvalues fλig of B̄ (in
descending order) using methodology developed in
[24,38]; we extend this work to networks that are multiplex
and possibly dense. We outline our results here and provide
further details in the Supplemental Material [41]. We begin
by describing the statistical properties of entries fĀijg,
which are independent random variables following a
binomial distribution PðĀij ¼ aÞ ¼ fða;L;ΠcicjÞ, where

fða;L; pÞ ¼
�
L

a

�
pað1 − pÞL−a ð2Þ

has mean Lp and variance Lpð1 − pÞ. Provided that there
is sufficiently large variance in the edge probabilities [i.e.,
NLρð1 − ρÞ ≫ 1], we find that the limiting N → ∞ dis-
tribution of bulk eigenvalues for B̄ is given by a semicircle
distribution,

PðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ22 − λ2

p
πλ22=2

ð3Þ

for jλj < λ2 and PðλÞ ¼ 0 otherwise, where

λ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4NL½ρð1 − ρÞ−Δ2=4�

q
ð4Þ

is the upper bound on the support of this spectral density
and is the limiting N → ∞ value of the second-largest
eigenvalue. The largest eigenvalue of B̄ in the N → ∞ limit
is an isolated eigenvalue

λ1 ¼ NLΔ=2þ 2½ρð1 − ρÞ−Δ2=4�=Δ: ð5Þ
As we shall show, Δ� → 0 as N increases, and therefore the
Δ2=4 terms in Eqs. (4) and (5) are negligible near the
detectability limit (i.e., Δ ≈ Δ�Þ. The eigenvector v corre-
sponding to λ1 gives the spectral bipartition—the inferred
community label of node i is determined by the sign of vi—
and provided that the largest eigenvalue corresponds to this
isolated eigenvalue, λ1, the eigenvector entries fvig are
correlated with the community labels fcig. To obtain the
detectability limit, we set λ1 ¼ λ2, neglect the Δ2=4 terms
and simplify, yielding a modified detectability equation
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NLΔ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4NLρð1 − ρÞ

p
: ð6Þ

Note that Eq. (6) recovers Eq. (1) when L ¼ 1 and ρ → 0
[i.e., for sparse networks, ρð1 − ρÞ ≈ ρ]. Defining p�

in ¼
ρþ Δ�=2 and p�

out ¼ ρ − Δ�=2, we find for fixed ρ and
increasing N and/or L that p�

in;out → ρ and Δ� → 0,

decaying as Oð1= ffiffiffiffiffiffiffi
NL

p Þ.
We now study Δ� for the thresholded networks, which

correspond to single-layer SBMs in which the community
labels fcjg are identical to those of the multilayer SBM, but
there are new effective block edge probabilities

Π̂ð ~LÞ
nm ¼ 1 − Fð ~L − 1;L;ΠnmÞ; ð7Þ

where Fða;L; pÞ is the cumulative distribution function for
the binomial distribution fða;L; pÞ. The effective proba-

bilities for the AND and OR networks are Π̂ðLÞ
nm ¼ ðΠnmÞL

and Π̂ð1Þ
nm ¼ 1 − ð1 − ΠnmÞL, respectively. For the two-

community SBM, the effective probabilities are p̂ð ~LÞ
in;out ¼

1 − Fð ~L − 1;L; pin;outÞ, Δ̂ð ~LÞ ¼ p̂ð ~LÞ
in − p̂ð ~LÞ

out , and ρ̂ð ~LÞ ¼
ðp̂ð ~LÞ

in þ p̂ð ~LÞ
out Þ=2. The modularity matrices for the thresh-

olded networks become B̂ð ~LÞ
ij ¼ Âð ~LÞ

ij − ρ̂ð ~LÞ. We identify the

detectability limit by substituting Δ̂ð ~LÞ ↦ Δ and ρ̂ð ~LÞ ↦ ρ
into Eq. (6) (with L ¼ 1) and numerically finding a solution
ðΔ�; ρÞ using a root-finding algorithm. Note that the
detectability equation holds for the effective probabilities,

NΔ̂ð ~LÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Nρ̂ð ~LÞð1 − ρ̂ð ~LÞÞ

q
, and not the single-layer

probabilities, NΔ ≠
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Nρð1 − ρÞp

.
In Figs. 1(a) and 1(b), we show Δ� versus the mean edge

probability ρ for the different aggregation methods: (i) a
single layer (red dot-dashed curves), which is identical in
panels (a) and (b); (ii) the summation network (blue dashed
curves), for which the curve in (b) corresponds to the curve
in panel (a) rescaled by a factor of 1=2; and (iii) thresholded
networks (solid curves), which shift left-to-right with
increasing ~L. This is evident by comparing Δ� for the
AND ( ~L ¼ L, gold circles) and OR ( ~L ¼ 1, cyan squares)
networks. We find when ρ is large that the AND (OR)
network has a relatively small (large) detectability limit; in
contrast, when ρ is small the AND (OR) network has a
relatively large (small) detectability limit. In other words,
aggregating layers using the AND (OR) operation is ben-
eficial for dense (sparse) networks.
It is interesting to ask if there are choices of ρ and ~L for

which the detectability limit vanishes as OðL−1=2Þ with
increasing L—that is, a behavior similar to that of the
summation network. To this end, we study the threshold
~L ¼ ⌈ρL⌉, which we numerically observe to be the best ~L
for most values of ρ. This choice is also convenient as it
only requires knowledge of the mean edge probability, ρ,
which is easy to obtain in practice. In Fig. 1(c), we plot Δ�

versus ρ for L ¼ 4 and ~L ¼ ⌈ρL⌉ (orange triangles), which
lies along the solution curves for ~L ∈ f1;…; Lg (solid
curves). In Fig. 1(d), we plot Δ� for threshold ~L ¼ ⌈ρL⌉
with L ¼ 4 (orange triangles) and L ¼ 64 (green crosses).
These curves align due to the rescaling of the vertical axis
by

ffiffiffiffiffiffiffi
NL

p
. In fact, we find in the large L limit that these

solutions Δ� collapse onto a single curve ðΔ�
ðasymÞ; ρÞ that

solves

NLΔ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πNLρð1 − ρÞ

p
; ð8Þ

which we plot by the black line in Fig. 1(d). To obtain
Eq. (8), we use the central limit theorem [42] to approximate

p̂ð⌈ρL⌉Þ
in;out ≈ p̂ðasymÞ

in;out ¼ 1−G½Lρ;Lpin;out; Lpin;outð1− pin;outÞ�,
where Gðp; μ; σ2Þ ¼ 1

2
þ 1

2
erf½ðp − μÞ=σ ffiffiffi

2
p � is the value

of the cumulative distribution function of the normal
distribution with mean μ and variance σ2 evaluated
at p. In particular, we approximate Δ̂ð⌈ρL⌉Þ ≈ Δ̂ðasymÞ ¼
erfðΔ ffiffiffiffi

L
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ρð1 − ρÞp Þ and ρ̂ð⌈ρL⌉Þ ≈ ρ̂ðasymÞ ¼ 1=2.

Equation (8) is recovered after substituting Δ̂ðasymÞ ↦ Δ
and ρ̂ðasymÞ ↦ ρ into Eq. (6) with L ¼ 1 and using the

FIG. 1. Layer aggregation enhances the detectability of com-
munity structure. (a),(b) We plot the detectability limit Δ� versus
mean edge probability ρ for a single network layer (red dot-
dashed curves), the aggregate network obtained by summation
(blue dashed curves), and aggregate networks obtained by
thresholding this summation at ~L ∈ f1; 2; 3; 4g (solid curves).
Gold circles and cyan squares highlight ~L ¼ L and ~L ¼ 1, which
we refer to as AND and OR networks, respectively. Results are
shown for N ¼ 104 nodes with (a) L ¼ 4 and (b) L ¼ 16 layers.
(c) For L ¼ 4, we show Δ� versus ρ for the optimal threshold
~L ¼ ⌈ρL⌉ (orange triangles), which lies on the solution curves
for ~L ∈ f1;…; Lg (solid curves). (d) We show Δ� for ~L ¼ ⌈ρL⌉
with L ∈ f4; 16g. These piecewise-continuous solutions collapse
onto the asymptotic solution Δ�

ðasymÞ (black curve) as L increases.

In panels (c),(d), we additionally plot Δ� for the summation
network (blue dashed curves).
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first-order expansion erf−1ðN−1=2Þ ≈ ffiffiffiffiffiffiffiffiffiffiffiffi
π=4N

p
. Importantly,

Eq. (8) implies that Δ� decays as Oð1= ffiffiffiffiffiffiffi
NL

p Þ for thresh-
olded networks with ~L ¼ ⌈ρL⌉.
In Fig. 2, we illustrate the limiting L → ∞ behavior for

thresholded networks with ~L ¼ ⌈ρL⌉. In panels (a) and (b),

we plot p̂ð⌈ρL⌉Þ
in (blue triangles) and p̂ð⌈ρL⌉Þ

out (red circles)
versus ρ for Δ ¼ 0.1 with (a) L ¼ 4 and (b) L ¼ 64. We

also plot the effective probabilities p̂ð ~LÞ
in (solid curves) and

p̂ð ~LÞ
out (dashed curves) for the AND (gold curves) and OR

(cyan curves) networks. In panel (b), we additionally plot

the limiting effective probabilities p̂ðasymÞ
in (blue solid curve)

and p̂ðasymÞ
out (red dashed curve). Comparing panel (b) to (a),

one can observe that as L increases, the piecewise-

continuous solutions p̂ð⌈ρL⌉Þ
in;out separate and align with the

respective asymptotic solutions p̂ðasymÞ
in;out .

In Figs. 2(c)–(f), we illustrate adjacency matrices Âð⌈ρL⌉Þ

of thresholded networks with ρ ¼ 0.3 and Δ ¼ 0.1 for
various L. We note that the community structure is
undetectable for L ¼ 1 since Δ� ¼ 0.1095, whereas it is
detectable (and visually apparent) for L ¼ 128. Comparing
(c)–(f) illustrates the L → ∞ limiting behavior of Âð⌈ρL⌉Þ.
Specifically, application of Hoeffding’s inequality [43] (and

using that pin;out − ρ ¼ �Δ=2) yields pð⌈ρL⌉Þ
in ≥ 1 − e−LΔ

2=2

and pð⌈ρL⌉Þ
out ≤ e−LΔ

2=2, which implies that p̂ð⌈ρL⌉Þ
in → 1 and

p̂ð⌈ρL⌉Þ
out → 0with increasing L so that Âð⌈ρL⌉Þ

ij → δcicj , where
δnm is the Kronecker delta function.
We conclude by studying the dominant eigenvector v of

the appropriate modularity matrix, which undergoes a
phase transition at Δ�: fvig and the community labels
fcig are uncorrelated for Δ < Δ�, whereas they are
correlated for Δ > Δ�. Using methodology developed in
[38], we find that the entries fvig within a community are
Gaussian distributed with mean

jhviij ¼
ffiffiffiffi
1

N

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

λ22
ðNLΔÞ2

s
; ð9Þ

which we use as an order parameter to observe the phase
transition. In Fig. 3, we depict observed (symbols) and
predicted values given by Eq. (9) (curves) of jhviij for
a single layer (× symbols), the summation network
(þ symbols), and thresholded networks (open symbols).
We focus on a range of Δ that contains Δ� for most
aggregation methods. Note for the thresholded networks
that there is no simple ordering to Δ�, which can be
deduced by examining Fig. 1(a) for ρ ∈ f0.02; 0.6g.
Finally, we note that finite-size effects amplify disagree-
ment between observed and predicted values near the phase
transitions.
In this Letter, we studied limitations on community

detection for multilayer networks with layers drawn from a
common SBM. As an illustrative model, we analyzed the
effect of layer aggregation on the detectability limit Δ� for
two equal-sized communities. When layers are aggregated
by summation, we analytically showed that Δ� vanishes as
OðL−1=2Þ. When layers are aggregated by thresholding this
summation, Δ� depends on the choice of threshold, ~L.
For ~L ¼ ⌈ρL⌉, we analytically found Δ� to also vanish as
OðL−1=2Þ. We note that our analysis also describes layer
aggregation by taking the mean, L−1P

lA
ðlÞ, since the

multiplication of a matrix by a constant simply scales the
eigenvalues by that constant. Thus, our results are in
excellent agreement with previous work [35] that proved
the consistency of spectral clustering via the mean
adjacency matrix.
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Finally, it is commonplace to threshold pairwise-
interaction data to construct network representations that
are sparse and unweighted and can be studied at a lower
computational cost. Our research provides insight into this
common—yet not well understood—practice. It would be
interesting to extend this work to allow the SBMs of layers
to be correlated [25] (that is, rather than identical) or
organized into “strata” [17] (i.e., layers within a single
stratum are similar, but they differ across strata). We are
currently extending our analysis to hierarchical SBMs [27].
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