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The electric field in an extended phase of a liquid electrolyte exposed to a temperature gradient is
attributed to different thermophoretic mobilities of the ion species. As shown herein, such Soret-type ion
thermodiffusion is not required to induce thermoelectricity even in the simplest electrolyte if it is confined
between charged walls. The space charge of the electric double layer leads to selective ion diffusion driven
by a temperature-dependent electrophoretic ion mobility, which—for narrow channels—may cause
thermovoltages larger in magnitude than for the classical Soret equilibrium.
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The Seebeck effect describes the generation of a thermo-
electric potential when a conductor is exposed to a temper-
ature gradient ∇T [1]. Thermoelectricity and its related
effects are the cornerstones of key technologies for temper-
ature measurements [2], refrigeration, and recovery of
waste heat [3–5], and have gained renewed interest within
the realm of nanoscale transport processes [6]. While the
charge carriers in the conduction band of semiconductors
may generate a thermoelectric voltage without exhibiting
a thermophoretic mobility [7], thermoelectricity in an
extended (i.e., electroneutral) phase of a liquid electrolyte
is based on thermophoresis of the dissolved ions species k
[8]. Their number concentrations nk align with ∇T such
that the ion fluxes driven by Fickian diffusion and ther-
mophoresis balance each other. The overall salt concen-
tration n is then given by [9]

∇n
n

¼ −Π
∇T
T

: ð1Þ

Herein, to highlight the key effects, the discussion is
focused on symmetric electrolytes of valence ν (k ¼ þ
for the cation and k ¼ − for the anion), for which electro-
neutrality implies nþ ¼ n− ¼ n. Consequently, the effec-
tive Soret coefficient simplifies to read Π ¼ ðQþ þQ−Þ=
ð2kBTÞ. The Boltzmann constant is denoted by kB, and the
thermophoretic behavior of the ions is quantified in terms
of the heats of transport Qk. For such simple electrolytes,
the thermocell electric field is given by [9]

Eð∞Þ
Q ¼ ΔQ

2eν
∇T
T

; ð2Þ

i.e., it is solely generated by the difference in the thermo-
phoretic mobilities of the ions expressed by ΔQ ¼
Qþ −Q−. The elementary charge is denoted by e.
Equations (1) and (2) define the classical Soret equilibrium
derived under the assumptions of vanishing flux densities,
the absence of an advective velocity u, and electroneutrality
throughout the domain.

Electroneutrality holds only for the bulk phase, where the
influence of wall charges is negligibly small. Nevertheless,
the relatively few theoretical investigations of the thermal
membrane potential of electrolytes in charged pores com-
monly rely on the phenomenological theory of nonequili-
brium thermodynamics and averaged transport numbers,
neither explicitly resolving the ion distribution inside the
pore, nor specifying the surface charge density, nor the pore
size [10–13]. While numerous works discuss isothermal
transport processes in charged nanochannels [14], practically
no investigations are available addressing these interwoven
issues in detail if the temperature is not constant. Electrolyte-
filled nanopores or nanochannels with a temperature gra-
dient play a key role for various phenomena. For instance,
they are essential for the mechanisms by which organisms
use ion channels to sense temperature [15–17]. In addition,
the nonisothermal ion transport in porous membranes is a
promising candidate for the development of efficient thermo-
electric energy conversion techniques [18,19]. The purpose
of this Letter is to analyze the nonadvective transport
phenomena occurring in a slit nanochannel with charged
walls and filled with an electrolyte under application of a
temperature gradient along the channel. As will be shown,
the presence of an electric double layer (EDL) alters the
Soret voltage given by (2), but also induces an additional
thermoelectric voltage due to the temperature-dependent
electrophoretic ion mobility alone, without relying on the
intrinsic Soret effect quantified by the parametersQk. To the
best of our knowledge, such a mechanism has never been
explicitly described before. Thermoosmotic effects arising
from the mechanical imbalance of the nonisothermal ion
cloud of the EDL will be disregarded; i.e., the momentum
equations are not solved for. In preliminary, so far unpub-
lished work, they were found to be weak compared to the
phenomena discussed herein.
Figure 1 depicts a schematic of the investigated system.

The wall temperature of a long slit channel of half-width h
filled with a dilute electrolyte uniformly increases by ΔT
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over a length of l. The analysis of this Letter is based on the
leading-order contribution of an asymptotic expansion in
the small parameter A ¼ h=l, while the dimensionless axial
gradients of any quantity nk; T;… are assumed to be small.
As verified in the Supplemental Material ([20], Sec. 1),
advection, viscous dissipation, and Joule heating can be
neglected in the energy equation. Hence, to first order in A,
the temperature gradient in the interior of the channel is
given by ∇T ¼ ðΔT=l; 0Þ, even if the thermal conductivity
of the electrolyte varies with temperature. With Dk being
the Fickian diffusion coefficients of the ion species, the
ionic Péclet numbers, Pek ¼ ul=Dk, are negligibly small in
the present system ([20], Sec. 1). The Nernst-Planck
equations (NPE), governing the ion concentrations, sim-
plify to ∇ · jk ¼ 0 ([20], Sec. 2), with

−jk ¼ Dk∇nk þ nkμk∇T þ eνknkωk∇ϕ ð3Þ

being the ion flux densities, where μk ≡DkQk=ðkBT2Þ and
jk ¼ ðjk;x; jk;zÞ. The overall electric field ∇ϕ ¼ ∇ψ − E is
the sum of the EDL field ∇ψ , fulfilling the Poisson
equation, and an induced electric field E with vanishing
associated charge density (source free) [33]. For A2 ≪ 1,
the Laplace equation and the symmetry condition at the
channel center imply that E ≈ ðE; 0Þ ([20], Sec. 3). The
electrophoretic ion mobilities are given by the classical
Stokes-Einstein relation ωk ¼ Dk=ðkBTÞ. To leading order
in A of the NPE and again incorporating the symmetry at
the channel center, the ion concentrations are determined
from (3) by jk;z ¼ 0. Together with ∂zT ≡ ∂T=∂z ¼ 0,
one finds that the local ion number concentrations are given
by ([20], Sec. 3)

nk ¼ nk;0 exp

�
−
eνkψ
kBT

�
; ð4Þ

which resemble the Boltzmann distribution. The local ion
concentrations at ψ ¼ 0 (electroneutral region) are denoted
by nk;0, which may be a function of x [34]. For a symmetric
electrolyte, nk;0 ≡ n for each ion species. Despite its
familiar appearance, Eq. (4) is a consequence of the
smallness of A and the symmetry along the channel center,
rather than of directly imposing thermodynamic equilib-
rium. Unlike in the conventional Soret equilibrium,
nþ ≠ n− ≠ n. By inserting (4) in (3), the axial flux densities
are given by

−
jk;x
nkDk

¼ dx lnðnÞ þ
eνk
kBT

�
−Eþ

�
Qk

eνk
þ ψ

�
dx lnðTÞ

�
;

ð5Þ
where dxð:Þ≡ dð:Þ=dx. For simple salts, the coefficients Dk
are very similar to each other. Focusing on the essential
effects, identical Dk ≡D are assumed in the following.
However, D does not need to be a constant and may vary
with T. Under no external electric load, E is calculated by
setting the overall electric current, I ¼ eν

R
h
0 ðjþ;x − j−;xÞdz,

to zero. This is equivalent to what is done in studies of
thermoelectricity in bulk electrolytes [9]. For the Seebeck
coefficient S≡ E=dxT one finds ([20], Sec. 4)

S ¼ SQ þ Sψ ; ð6Þ
where

SQ ¼ 1

T
ΔQ
2eν

R
h
0 e−Ψdz − q

2eνnR
h
0 coshðΨÞdz ; ð7Þ

Sψ ¼ 1

T

R
h
0 ψ coshðΨÞdzR
h
0 coshðΨÞdz : ð8Þ

The surface charge density is denoted by q ¼ −ϵð∂zψÞjz¼h,
with ϵ being the (temperature-dependent) dielectric permit-
tivity, while Ψ≡ eνψ=ðkBTÞ. To derive E and since the
functional form of n cannot be determined within the
employed approximation scheme, dx lnðnÞ ¼ dxn=n was
expressed by (1). While being accurate for channels with
nonoverlapping EDLs, for narrower channels this
assumption can be justified by viewing the channel as being
submerged in a large, nonisothermal tank and referring to a
system in electrochemical equilibrium for every local value
of T ([20], Sec. 4). Furthermore, neglecting terms of OðA2Þ,
the Poisson equation ∇ · ðϵ∇ψÞ ¼ −ρf was used, with ρf ¼
eνðnþ − n−Þ being the charge density. Note that, to first
order in A, the term ∇ϵ · ∇ψ can be neglected in the Poisson
equation, even though ϵ ¼ ϵðTÞ.
On the one hand, SQ defined by (7) expresses the

thermoelectric field caused by the Soret-type thermophoretic
ion motion under confinement. The presence of an EDL
modifies its corresponding bulk value, given in form of the

FIG. 1. Sketch of a slit channel of half-width h, submerged in
an extended, nonisothermal phase of an aqueous electrolyte. A
temperature difference ΔT ≤ T2 − T1 is present at the channel
walls over a length l, leading to an induced thermoelectric field E,
and to a gradient in salt concentration Δn=l. The channel wall
carries an electric surface charge density q or is kept at a constant
ζ potential. The wall charge is screened by ions in the electric
double layer (EDL) of thickness κ−1 with an internal potential ψ .
The total electric current I over the channel cross section
vanishes.
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classical Soret equilibrium by (2), to which SdxT reduces for
an uncharged or very wide channel. On the other hand, SQ
vanishes even under confinement if the heats of transport of
both ion species are identical (ΔQ ¼ 0). However, in that
case the overall thermoelectric field does not necessarily
vanish but is given by ðSÞjΔQ≡0 ¼ Sψ alone. If ΔQ ≠ 0, SQ
and Sψ are additive. Since advection is completely neglected
herein, the latter field does not have a thermoosmotic origin
([20], Sec. 5). Instead, according to (4), the temperature-
dependent electrophoretic ion mobility implies axial gra-
dients of nk within the EDL, which are additive to (1), while
the magnitude of the affiliated (Fickian) diffusion fluxes
depend on the polarity of the ion species. This gives rise to
charge separation and induces an electric field. To the best of
our knowledge, despite being a direct consequence of the
fundamental Stokes-Einstein equation, such an effect has
never been described before.
To further evaluate S, ψ has to be determined by solving

the Poisson equation. Along with Eq. (4), one finds to
leading order in A

∂2
zΨ ≈ κ2 sinhðΨÞ: ð9Þ

The local Debye parameter is given by κ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2ν2n=ðϵkBTÞ

p
. Note that since T ¼ TðxÞ, Ψ ¼ ΨðxÞ

and κ ¼ κðxÞ as well [we set κr ¼ ðκÞjx¼0, with T ¼ Tr and
n ¼ nr as a reference]. However, the modification of Sψ
caused by these dependences is of higher order in dxT and
can be neglected in most situations. The solution of (9) is
formally identical to the one of the isothermal Poisson-
Boltzmann (PB) equation. Within the Debye-Hückel (DH)
approximation (jΨj < 1) it reads ψ ðDHÞ ¼ ζ coshðκzÞ=
coshðκ̄Þ, where κ̄ ¼ κh, and ζ is the ζ potential at the
slipping plane of the wall. With this, the integrals in (7)
and (8) can be evaluated, yielding

SðDHÞQ ¼ 1

T
ΔQ
2eν

1

1þ ζ̄2

4
½tanhðκ̄Þκ̄ þ 1

cosh2ðκ̄Þ�
; ð10Þ

and

SðDHÞψ ¼ ζ

T
tanhðκ̄Þ

κ̄

1þ ζ̄2

2
½tanh2ðκ̄Þ

3
þ 1

cosh2ðκ̄Þ�
1þ ζ̄2

4
½tanhðκ̄Þκ̄ þ 1

cosh2ðκ̄Þ�
; ð11Þ

with ζ̄≡ eνζ=ðkBTÞ. According to (10) and for sufficiently
small ζ, the effect of the EDL on the Soret voltage is
negligibly small. At constant ζ, for κ̄ → 0 one has

SðDHÞψ → ζ=T, whereas SðDHÞψ vanishes for κ̄ → ∞. Hence,
the thermoelectric field induced by a temperature-dependent
electrophoretic ion mobility is a confinement effect and
dominant in charged, narrow channels.
In Fig. 2, the Seebeck coefficient Sψ , nondimensional-

ized by ζ=T, is plotted as a function of κ̄r, while
ζ ¼ ½15; 75; 125� × 10−3 V. The solutions according to
the DH approximation are compared to those based on
numerical evaluations of Eq. (9) ([20], Sec. 6). With

increasing κ̄r, all curves continuously decrease from unity
to zero. The PB solutions and the DH approximation are
indistinguishable for ζ ¼ 15 × 10−3 V and almost identical
for ζ ¼ 75 × 10−3 V if κ̄r > 2. If κ̄r ≲ 2 while ζ ¼
75 × 10−3 V, the DH approximation overpredicts Sψ .
This occurs also for ζ ¼ 125 × 10−3 V, whereas in that
case for κ̄r ≳ 2 Sψ is underpredicted. All data shown were
evaluated at T ¼ Tr ¼ 298 K. Corresponding calculations
at T ¼ 308 K (using Π=T ¼ 5 × 10−3 K−1 [35–37] and
dTϵ=ϵ ¼ −5.1 × 10−3 K [38]) to estimate the magnitude of
possible nonlinear effects due to κ̄ ¼ κ̄ðTÞ gave practically
indistinguishable results (not shown).
The NPE treat the ions as point charges, so that the

effects of the finite ion size [39] and ion-ion correlations on
steric and Coulombic interactions [40] are neglected. This
is permissible for ion concentrations and ζ potentials
not significantly exceeding nr ¼ 0.01 M and ζ ¼ 125 ×
10−3 V [41]. The effect under study is at its maximum for
κ̄ → 0. In this limit the ion cloud does not completely
screen the surface charge; i.e., ψ is nonvanishing at the
center of the channel. While for sufficiently wide channels
the Gouy-Chapman (GC) equation implies the equivalency
of a constant ζ potential and a constant value of q [42], this
does not hold for channels with pronounced EDL overlap
[43]. In this case, the variation of the electrokinetic
characteristics of a system as a function of κ̄r may be
different depending on whether a constant value of ζ or of q
is imposed. Furthermore, the constituting equations of
the PB model are derived in the framework of a first-order
expansion in A. Especially the validity of (4) in case of
overlapping EDLs has to be confirmed, since the reference
concentrations at ψ ¼ 0, nk;0, can no longer refer to a
location inside the channel. Such issues can be avoided by a

FIG. 2. Seebeck coefficient Sψ relative to ζ=T and as a function
of the nominal Debye parameter κ̄r ¼ κrh. Results based on the
Debye-Hückel (DH) approximation [lines without symbols,
computed by (11)], are compared to solutions based on a
numerical evaluation (PB, Poisson-Boltzmann) of (9) (lines with
symbols). All data were calculated for T ¼ 298 K.
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(numerically solved) model solely based on the coupled
Poisson- and Nernst-Planck (PNP) equations, without
relying on (4). In Fig. 3, the results of such simulations
for the given system are shown. The computations ([20],
Sec. 7) followed the basic strategy outlined in Refs. [43,44]
and were conducted using COMSOL MULTIPHYSICS 4.3a
[45]. While varying κ̄r, either a constant ζ potential
(ζ ¼ ½15; 75� × 10−3 V) or a constant surface charge den-
sity (q ¼ ½−1.1;−7.6� × 10−4 Cm−2) was imposed along
the channel walls, where the mapping between ζ and q is
provided by the GC model ([20], Sec. 7). Given the
negligible extent of advection, the Navier-Stokes equations
were not included in the model.
In Fig. 3 the (relative) Seebeck coefficient SψT=ζ is

shown as a function of κ̄r. For the numerical simulations
(depicted as symbols), the variation of κ̄r was achieved by a
variation of h, with the nominal EDL thickness being held
constant at κ−1r ≈ 10−7 m. For low ζ or q, the numerical
results are compared with the DH approximation, while for
more strongly charged walls they are compared with the PB
model. For κ̄r > 0.5, the PNP solutions fully agree with
the corresponding (quasi)analytical solutions (DH or PB).
From the PNP simulations conducted at constant q, it
follows that the surface charge is almost completely
screened if h is at least twice the nominal EDL thickness.

The PNP simulations of the cases with overlapping
EDLs (0.01 ≤ κ̄r ≤ 2) were repeated by imposing q at
the charged walls, with its value—for given ζ and κ̄r—
being individually precalculated by the analytical solution
of the PB equation (9) [46] rather than using the GC
model ([20], Sec. 8). For 0.2 ≤ κ̄r ≤ 2 at ζ ¼ −15 or
−75 × 10−3 V, the corresponding results (see Fig. 3) agree
well with those where a constant ζ potential is imposed
directly. For decreasing κ̄r below 0.2, the PNP model
increasingly deviates from the DH and PB models for any
considered ζ potential or q. This is likely caused by an
insufficient length of the channel in the computational
domain, but could not be resolved with the available
computational resources. From the PNP simulations it
was also found that the Soret voltage under confinement,
expressed by (7), deviates from its bulk value Sð∞Þ

Q by not
more than 1% for any channel width.
The invariance of either the ζ potential or q along the

channel wall does not necessarily hold for a nonisothermal
channel, and both parameters might be a function of
temperature [47]. Such questions can be addressed by
detailing the surface charge formation process [48,49]. For
a silica channel with its surface charge being mainly formed
by the dissociation of silanol groups, corresponding results
are included in Fig. 3. For a pH value of 4, the model was
calibrated with experimental data available for NaCl as
electrolyte ([20], Sec. 9). It is apparent that the results using
the (temperature-dependent) charge regulation model fol-
low closely those of the other approaches. Consequently,
the thermoelectricity described by (8) [and in the DH limit
by (11)], being the main result of this work, is remarkably
robust for values of κ̄r larger than about 0.2.
The prediction of Sψ is firmly linked to the particular

expression of the electrophoretic ion mobility in the form of
the Einstein-Smoluchowski equation, which is the simplest
form of a fluctuation-dissipation relation under infinite
dilution. It was derived under the assumption of isothermal
conditions [50], and its use in nonisothermal systems of low
ionic strength is acceptable only if the momentum relaxation
time of an ion is much smaller than the time the particle takes
to experience a temperature change [51]. Herein, the ratio
between these characteristic time scales is Oð10−8Þ ([20],
Sec. 10). For systems of higher ionic strength and complex
electrolyte solutions, the electrophoretic ion mobility might
be itself a nontrivial function of temperature [52], which is
beyond the scope of the present work.
Our results indicate that the thermoelectric voltage of

dilute electrolytes in confined geometry may be quite
different from its bulk counterpart. While the presence
of the latter is intrinsically linked to different thermopho-
retic mobilities of the ion species alone, the former may be
present even if the heats of transport of each ion species are
identical (ΔQ ¼ 0) or very small. In this case, the thermo-
electric voltage under confinement is solely proportional to
the ζ potential or surface charge density of the channel and

FIG. 3. Seebeck coefficient Sψ relative to ζ=T and as a function
of the nominal Debye parameter κ̄r ¼ κrh. The data points are
obtained from a full numerical simulation of the Poisson equation
and the Nernst-Planck equation (PNP), without relying on (4).
Either the surface charge density q or the ζ potential is held
constant. The PNP model is compared with the Debye-Hückel
(DH) approximation (11) as well as with the Poisson-Boltzmann
(PB) model, which is based on a numerical evaluation of (9). For
selected cases (PNP-PB), q imposed in the PNP simulation as a
boundary condition was predetermined for a given κ̄r from an
analytical solution of (9), where ζ was set either to −15 or
−75 × 10−3 V. For a pH value of 4, the PNP simulation was also
combined with a temperature-dependent charge regulation model
(PNP-CR), which is detailed in the Supplemental Material ([20],
Sec. 9). The temperature was set to T ¼ 298 K.
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reaches its maximum in the limit of κ̄r → 0. For narrow,
highly charged channels and within the validity range of
the presented theory, such thermovoltages might be up to
30 times larger than the values of the conventional Soret
voltage being typical for simple monovalent electrolytes in
the bulk ([20], Sec. 11). Our findings can be used as a novel
method to determine the ζ potential of nanochannels and
biological ion channels, while also being of interest for the
design of novel small-scale heat exergy (i.e., availability)
recovery devices. Even though the presented theory is
strictly valid only for domains of a small aspect ratio, the
underlying mechanism may still have an impact on the
thermophoretic motion of larger, charge-stabilized particles
[53,54] and biological molecules [55].
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