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Using dynamical mean-field theory and exact diagonalization we study the phase diagram of the
repulsive Haldane-Hubbard model, varying the interaction strength and the sublattice potential difference.
In addition to the quantum Hall phase with Chern number C ¼ 2 and the band insulator with C ¼ 0 present
already in the noninteracting model, the system also exhibits a C ¼ 0 Mott insulating phase, and a C ¼ 1

quantum Hall phase. We explain the latter phase by a spontaneous symmetry breaking where one of the
spin components is in the Hall state and the other in the band insulating state.
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When a quantum system has two or more competing
phases, exotic states can emerge in the crossover region
between these. Especially interesting phenomena can be
expected between topologically trivial and nontrivial
phases. Three paradigm models that offer a generic plat-
form to explore such intermediate phases are the Haldane-
Hubbard, the Kane-Mele-Hubbard, and the ionic Hubbard
models. The existence and the nature of exotic intermediate
states of matter between such phases, showing spectral
features and responses of a mixed character, is a subtle and
largely open question.
In the ionic Hubbard models an energy offset (stagger-

ing) ΔAB between the two sites (A and B) of a bipartite
lattice is combined with an on-site repulsive interaction U.
Starting from ΔAB ¼ U ¼ 0, the models show a band
insulator for large ΔAB and a Mott insulator for strong
interactions U. Predictions of possible intermediate states
between the two insulators range from semimetals [1] and
half-metals [2] to metallic [3–5] and insulating [5,6] ones,
depending on the kinetic part of the Hamiltonian.
Dimerized bond-ordered insulators have been shown to
exist for 1D systems [7–9], but predictions for, e.g., the 2D
square lattice are contradictory [3,6]. The band and
Mott insulators in the ionic Hubbard model have been
recently observed in ultracold quantum gases [10], but no
information about a possible intermediate state was
obtained.
In the Haldane model [11], a staggered magnetic flux

threads a hexagonal lattice, endowing the noninteracting
electronic bands with a finite Chern number and quantized
Hall conductivity. Large staggering ΔAB drives the system
from this topological insulator into a trivial band insulator.
The model was recently realized in ultracold gas imple-
mentations [12,13]. Large U leads to a topologically trivial
Mott insulator phase, but little is known about possible
intermediate states. Mean-field studies [14–18] suggest the
existence of an interesting insulator phase with C ¼ 1, but

whether this phase survives the inclusion of correlations is
so far unknown. The existence of intermediate states is an
open question [19–23] also in the similar but time-reversal-
symmetric Kane-Mele model [24], despite the fact that sign
problem free quantum Monte Carlo (QMC) methods exist
for that model.
In this Letter, we ask whether intermediate phases are

possible in the Haldane-Hubbard model when the stagger-
ing ΔAB and interaction U are varied from zero to large
values. We aim to investigate the nature of such states as
well as their spectral properties, and to suggest feasible
experimental realizations of the predicted phases.
Importantly, mean-field theory is expected to be highly
unreliable for the intermediate phases, not only due to
strong interactions and low dimensionality (2D), but also
because they are by definition states where orders of the
surrounding phases compete. Therefore, a crucial ingre-
dient of our study is that we apply two complementary,
state-of-the-art beyond-mean-field methods. First, we per-
form exact diagonalization of finite-size clusters (FS ED).
Exact diagonalization gives reliable information about the
nature of the ground state, without any bias from an ansatz,
and proves its stability against quantum fluctuations
over the system size, but suffers from finite-size effects.
Therefore, we also apply dynamical mean-field theory
(DMFT) to prove that the predicted phase survives at
the thermodynamic limit. DMFT goes beyond static
mean-field (MF) theory by treating local quantum fluctua-
tions exactly. Nonlocal quantum fluctuations are not
included and the method might be biased by the
choice of the order parameters. In our case, however,
these weaknesses are controlled by the exact diagonaliza-
tion results. For comparison, we also present MF
results.
We write the Hamiltonian of the Haldane-Hubbard

model (Fig. 1) as H ¼ Hk þHl, where Hl is a local,
on-site part and the kinetic term Hk is given by
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Hk ¼ t
X

hi;ji;σ
c†iσcjσ þ t0

X
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expðiϕijÞc†iσcjσ; ð1Þ

where hi; ji and ⟪i; j⟫ denote summation over nearest and
next-nearest neighbors on a hexagonal lattice, and σ runs
over the two spin components. The phase ϕij has a constant
absolute value and a sign that depends on the direction of
the bond, ϕij ¼ �ϕ. The on-site part can be written as
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where sgnðiÞ is þ1 for sites i on sublattice A and −1 for
sublattice B. In the following, we take t ¼ 1 and set
t0 ¼ 0.2. A particle-hole transformation c0iσ ¼ sgnðiÞc†iσ
keeps the Hamiltonian otherwise invariant, but takesΔ0

AB ¼
−ΔAB and ϕ0 ¼ π − ϕ. A further rotation of the lattice by π
radians around a center of a hexagon only changes the sign
of ΔAB. We study the model at half-filling and set the phase
ϕ ¼ π=2. The above symmetries then imply that the phase
diagram is symmetric under the reflection ΔAB → −ΔAB
and that the chemical potential is zero. We do not consider
attractive interactions which may support topological
superfluids [17,25].
We study the phase diagram of this model as a function

of the interaction strength U and the sublattice potential
difference ΔAB. We use an exact diagonalization impurity
solver [26,27] to obtain results within single-site and two-
site cellular DMFT [26,28,29], always allowing for a
symmetry breaking between the A and B sublattices. We
find that using 5 or 6 bath sites already gives a good
representation of the bath Green’s function. For selected
parameters we have confirmed the results using the CT-INT
algorithm [30,31] as the impurity solver. In the mean-field
and DMFT solutions antiferromagnetism is measured by an
order parameter m defined as

m ¼ 1

Ns

����
X

i

sgnðiÞðhni↑i − hni↓iÞ
����; ð3Þ

whereNs is the number of sites, and the degree to which the
particles are localized to the low-energy sublattice is
measured by the staggered density

ns ¼
1

Ns

����
X

i

sgnðiÞðhni↑i þ hni↓iÞ
����: ð4Þ

Another important quantity is the Chern number. In [32]
it was shown that knowledge of the zero-frequency Green’s
function is sufficient to determine topological invariants for
interacting systems. The result can be formulated [33,34]
by defining the so-called topological Hamiltonian as

htð~kÞ≡ −Gðiω ¼ 0; ~kÞ−1 ¼ h0ð~kÞ þ Σðiω ¼ 0; ~kÞ; ð5Þ
where G and Σ are the interacting single-particle Green’s
function and self-energy of the problem, and h0 is the
noninteracting single-particle Hamiltonian (the Bloch
Hamiltonian). In our case G, Σ, and h0 are matrices in
spin and sublattice space. According to the theory, the
Chern number calculated for a noninteracting problem
defined by ht is the same as the Chern number for the
original interacting problem. We obtain an approximation
for the zero-frequency self-energy by a linear interpolation
between the smallest-in-absolute-value Matsubara frequen-
cies at a very low temperature, taking care that the
Matsubara frequency grid is dense enough. We then
calculate the topological Hamiltonian on a k-point grid
using Eq. (5) and obtain the corresponding Bloch eigen-
states. These states can be used to calculate the Chern
number using the gauge invariant discretization of the
Berry curvature described in [35].
The Chern number can also be calculated from FS ED

using twisted boundary conditions [36],

ψðxj þ LjÞ ¼ eiθjψðxjÞ; ð6Þ

where j indexes the space dimensions and Lj is the length
of the system along direction j. The Chern number can then
be calculated by dividing the (θ1, θ2) plane into a discrete
lattice and computing the flux of the Berry curvature from
the Berry phase acquired by the state around each cell [37].
Our results have been obtained for the 16-site cluster shown
in Fig. 1.
Our main result, the topological phase diagram of the

model, is presented in Fig. 2. For smallU the main effect of
the interaction is to push the transition from the quantum
Hall (QH) phase to the band insulating (BI) phase to higher
values of ΔAB than in the noninteracting case. This effect
can be explained in a mean-field picture: The sublattice
potential difference causes a density difference between the
sublattices, which in turn causes a Hartree potential that

FIG. 1. A patch of the Haldane model. The model consists of a
hexagonal lattice with nearest- and next-nearest-neighbor (NNN)
hoppings. The arrows show the direction of positive phase
winding for the complex NNN hoppings, which are responsible
for the topological properties of the model. In this Letter, we
study the interplay of a potential difference between sublattices A
and B and a local Hubbard interaction. The blue rectangle shows
the finite-size exact diagonalization cluster.
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opposes this effect. The QH phase has Chern number
C ¼ 2, which is the sum of the Chern numbers of the two
(equivalent) spin channels.
For high interaction strengths, on the other hand, the

main features of the phase diagram are the antiferromag-
netic Mott insulator and the band insulator phase whose
boundary roughly follows the line ΔAB ¼ U=2. Below this
line U dominates and the ground state of the local
Hamiltonian Hl has no doubly occupied sites, while above
the line ΔAB drives all of the particles to the lower energy
sublattice. Nontrivial competition between the hopping, U
and ΔAB occurs close to the line ΔAB ¼ U=2 where the
large energy scales U and ΔAB mostly cancel each other.
Indeed, we find that this boundary region between the two
topologically trivial insulators exhibits a phase with Chern
number C ¼ 1.
In themean-field solution [14–18] for theC ¼ 1 phase the

staggered potential drives one of the components mostly to
the low-energy sublattice. Thus, this component is effec-
tively in the topologically trivial region of the phase diagram
of the Haldane model. However, the larger density of one
component on the lower sublattice creates a Hartree poten-
tial that mostly cancels the sublattice potential difference
ΔAB for the other component, which then carries the Chern
number C ¼ 1. Because of this symmetry breaking, the
C ¼ 1 phase has a nonzerom, while theC ¼ 2 phase and the
band insulator are paramagnetic, although the mean-field
solution also has a very narrow antiferromagnetic region
with C ¼ 2 near the C ¼ 2 to C ¼ 1 transition line.
We have confirmed this picture in the FS ED calculations

by comparing the obtained ground state with an ansatz
that is a symmetric linear combination jψi ¼
ð1= ffiffiffi

2
p ÞðjQHi↑jBIi↓ þ jBIi↑jQHi↓Þ, where jQHi and

jBIi are the single-component ground states of the non-
interacting model for vanishing (quantum Hall) and large
ΔAB (band insulator), respectively. In Fig. 3(b) we present

the overlap between this state and the ground state, which
reaches values as high as 0.5 in the C ¼ 1 region of the
phase diagram. This shows that the above qualitative
picture of the C ¼ 1 state is correct. In the FS ED results
the C ¼ 1 phase is present already for weak interactions.
However, this is a finite-size effect: A mean-field calcu-
lation for the FS ED cluster produces the same result for
weak U, while the C ¼ 1 phase is absent in the infinite-
lattice mean field in this region. This is expected, as finite-
size effects are known to be important when the band gap of
the noninteracting Hamiltonian is small [38].
To further understand the nature of the C ¼ 1 phase we

have calculated the quasiparticle gap (see Fig. 4), which in
ultracold gas experiments can be studied using rf or lattice
modulation spectroscopy [39]. For U ≪ 2ΔAB the system
is in the band insulating state and we find a gap that gets
smaller as U is increased. The gap has a minimum at the
point where the system enters the C ¼ 1 state. When U is
increased further, the gap for the component that carries
Chern number C ¼ 1 again reaches a minimum, and the
system moves to the C ¼ 0Mott insulator phase, where the
gap grows as a function of U. In the FS ED calculation we

FIG. 2. The phase diagram of the model from mean-field theory
(MF), finite-size exact diagonalization (FS ED) and single-site
dynamical mean-field theory (DMFT). The lines indicate the
topological transitions where the Chern number C changes. The
most interesting feature is the C ¼ 1 phase found by all methods
between the Mott insulating and band insulating regions.

(a) (b)

FIG. 3. (a) The single-site DMFT and FS ED phase diagrams
for a finite mass imbalance. The hoppings for the up component
were scaled by a factor of 0.8, while the hoppings for the down
component were scaled by 1.2 compared to the balanced situation
in Fig. 2. (b) The overlap between the ground state and the trial
state jψi obtained from the FS ED calculations (see text) for the
same parameters as in Fig. 2.

(a)

(b)

FIG. 4. (a) The quasiparticle gap Δ for the up and down
components obtained from two-site DMFT and the spin-rotation-
invariant result from FS ED at ΔAB ¼ 20. (b) The Chern number,
staggered density, and the antiferromagnetic order parameter m
from two-site DMFT and FS ED for the same ΔAB.
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do not see a gap closing at the boundary of the C ¼ 1 phase
and the Mott phase because the finite-size ground state is
symmetric with respect to spin rotations.
We have also done DMFT calculations for different

values of t0. When t0 is increased, the intermediate band
between the band insulator and the Mott insulator gets
wider, as the Mott insulator is pushed to larger values of U.
At the same time the C ¼ 2 phase extends into higher
values of U within the intermediate band: for t0 ¼ 0.3 it is
already present at values of U > 20. However, we stress
that our DMFT results for t0 ≳ 0.3 are not necessarily
physical, as we have not considered, e.g., the exotic
magnetic orders predicted for this parameter region [40,41].
For ΔAB ¼ 0 we have performed six-site cluster DMFT

calculations [42] using the CT-INT impurity solver, as there
is only a minor sign problem in this region. All DMFT
results show a first order transition, which explains why FS
ED results differ from DMFT close to ΔAB ¼ 0: The finite
cluster cannot exhibit a sudden development of long range
order. We note that for vanishing t0 the transition is
indicated by large scale QMC to be of the second order
[43], while cluster DMFT finds a first order transition [44].
Extrapolating to zero temperature, the existence of the
antiferromagnetic solution in the dynamical cluster
approximation starts at Uc ¼ 6.21� 0.01, which is in
good agreement with the single-site DMFT result Uc ¼
6.27� 0.01, while cellular DMFT gives Uc ¼ 6.6� 0.1.
Wu et al. [45] find a much lower value Uc ≈ 3.7 at t0 ¼ 0.2
in a two-site DMFT scheme. However, our results for Uc
agree well with the FS ED transition point and are
consistent with the t0 ¼ 0 cellular DMFT result Uc ≈ 4.6
[44], as t0 > 0 is expected to increase Uc.
Finally, we note that by the Mermin-Wagner theorem the

SU(2) symmetry of the model can only be broken at zero
temperature. However, the critical temperatures can be
made finite by adding contributions to the Hamiltonian that
break the SU(2) symmetry [46,47]. A mass imbalance (i.e.,
different hopping strengths for the two components) would
even explicitly break the whole SU(2) symmetry away from
the ΔAB ¼ 0 line. As this enables the observation of a
C ¼ 1 phase already for vanishing interactions, it would
provide a way to test detection techniques in the non-
interacting limit. Figure 3(a) presents the DMFT phase
diagram of the model for a finite mass imbalance.
In summary, we found firm evidence for a C ¼ 1

insulator in the Haldane-Hubbard model which sponta-
neously breaks the SU(2) spin-rotation symmetry of the
model. Our results differ from the mean-field result [14–18]
which sets the ΔAB ¼ 0 boundary between the C ¼ 2 and
Mott insulators at U ¼ 4t, and predicts the C ¼ 1 phase to
be present for small ΔAB. In contrast, we find the boundary
at U ¼ 6t and that the C ¼ 1 phase is more likely to occur
only for ΔAB ≳ 2 as predicted by DMFT (the prediction of
this phase by FS ED for small ΔAB is likely a finite-size
effect). It is also not clear if the slave-spin theory of [18] is

an improvement over the mean-field treatment as it, e.g.,
finds that the critical U for antiferromagnetism at the
ΔAB ¼ 0 line is decreased compared to the mean-field
result, and there is an unphysical first order transition to the
Mott phase with ns as the order parameter. The variational
cluster ansatz results [45,48] differ from ours in that they
exhibit a topological Mott insulator phase and a narrow
topological antiferromagnetic region for ΔAB ¼ 0, which
are not found in our FS ED or DMFT calculations. We also
do not see signs of spin liquid phases predicted to occur
[15,49] already for small t0. However, our study does not
exclude the possibility of spin liquids or exotic magnetic
order predicted [14,40,41,50,51] for t0 ≳ 0.3, which
strongly frustrates the simple antiferromagnetic order
and thus enables other phases to be present.
In comparison to the ionic Hubbard models, the inter-

mediate state we found is more robust and occupies a larger
part of the phase diagram. For instance, the intermediate
insulator state in [6] vanishes around U ¼ 11 while ours
continues. In [1,4], large ΔAB suppresses the intermediate
phase while in our case it helps to stabilize it. The half-
metal found in [2], which resembles our C ¼ 1 state since
only one spin component is gapped, exists in a tiny
parameter regime compared to the large stability area we
find. Thus, it seems evident that the intermediate phase in
the Haldane-Hubbard model, compared to the ionic
Hubbard one, is stabilized by topological effects. In
contrast to the semimetal of the ionic Hubbard model,
the phase diagram starts from ΔAB ¼ U ¼ 0 as a topo-
logical insulator with C ¼ 2. Characteristics of such an
insulator, for one component, are inherited in the C ¼ 1
phase. From the comparison to the mean-field studies of the
Haldane-Hubbard model and to the ionic Hubbard model
results we conclude that while correlation effects tend to
destroy the C ¼ 1 phase for small ΔAB, it survives as
an exceptionally stable intermediate state close to the
ΔAB ¼ U=2 line in the very strongly interacting region.
Experimental observation of the predicted phases would

be of fundamental importance for understanding not only
the Haldane-Hubbard model but also the intermediate states
in its cousin models. We calculate the quasiparticle gap, and
suggest that it could be used for probing the phase diagram
experimentally. Finally, we propose that a finite mass
imbalance would make it easier to experimentally access
the interesting features of the phase diagram.

We thank T. Esslinger, G. Jotzu, R. Desbuquois, M.
Messer, and F. Görg for useful discussions. This work was
supported by the Academy of Finland through its Centers
of Excellence Programme (2012–2017) and under Projects
No. 263347, No. 251748, No. 284621, and No. 272490, by
the European Research Council (ERC-2013-AdG-340748-
CODE and ERC-2011-AdG-290464-SIMCOFE), by the
Swiss National Science Foundation through the National
Competence Center in Research QSIT, and by the Pauli
Center for Theoretical Studies at ETH Zurich. T. I. V. is

PRL 116, 225305 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
3 JUNE 2016

225305-4



grateful for the support from the Vilho, Yrjö, and Kalle
Väisälä Foundation. T. S. acknowledges financial support
from the Finnish Doctoral Programme in Computational
Sciences FICS. Computing resources were provided by
CSC—the Finnish IT Centre for Science and the Triton
cluster at Aalto University.

*ari.harju@aalto.fi
†paivi.torma@aalto.fi

[1] M. Ebrahimkhas, Z. Drezhegrighash, and E. Soltani, Effects
of correlations on honeycomb lattice in ionic-Hubbard
model, Phys. Lett. A 379, 1053 (2015).

[2] S. Bag, A. Garg, and H. R. Krishnamurthy, Phase diagram
of the half-filled ionic Hubbard model, Phys. Rev. B 91,
235108 (2015).

[3] N. Paris, K. Bouadim, F. Hebert, G. G. Batrouni, and R. T.
Scalettar, Quantum Monte Carlo Study of an Interaction-
Driven Band-Insulator–to–Metal Transition, Phys. Rev.
Lett. 98, 046403 (2007).

[4] A. Garg, H. R. Krishnamurthy, and M. Randeria, Can
Correlations Drive a Band Insulator Metallic? Phys. Rev.
Lett. 97, 046403 (2006).

[5] K. Byczuk, M. Sekania, W. Hofstetter, and A. P. Kampf,
Insulating behavior with spin and charge order in the ionic
Hubbard model, Phys. Rev. B 79, 121103 (2009).

[6] S. S. Kancharla and E. Dagotto, Correlated Insulated Phase
Suggests Bond Order between Band and Mott Insulators in
Two Dimensions, Phys. Rev. Lett. 98, 016402 (2007).

[7] M. Fabrizio, A. O. Gogolin, and A. A. Nersesyan, From
Band Insulator to Mott Insulator in One Dimension, Phys.
Rev. Lett. 83, 2014 (1999).

[8] T. Wilkens and R. M. Martin, Quantum Monte Carlo study
of the one-dimensional ionic Hubbard model, Phys. Rev. B
63, 235108 (2001).

[9] C. D. Batista and A. A. Aligia, Exact Bond Ordered Ground
State for the Transition between the Band and the Mott
Insulator, Phys. Rev. Lett. 92, 246405 (2004).

[10] M. Messer, R. Desbuquois, T. Uehlinger, G. Jotzu, S. Huber,
D. Greif, and T. Esslinger, Exploring Competing Density
Order in the Ionic Hubbard Model with Ultracold Fermions,
Phys. Rev. Lett. 115, 115303 (2015).

[11] F. D. M. Haldane, Model for a Quantum Hall Effect without
Landau Levels: Condensed-Matter Realization of the
“Parity Anomaly,” Phys. Rev. Lett. 61, 2015 (1988).

[12] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T.
Uehlinger, D. Greif, and T. Esslinger, Experimental reali-
zation of the topological Haldane model with ultracold
fermions, Nature (London) 515, 237 (2014).

[13] N. Fläschner, B. S. Rem, M. Tarnowski, D. Vogel, D. S.
Lühmann, K. Sengstock, and C. Weitenberg, Experimental
reconstruction of the Berry curvature in a topological Bloch
band, arXiv:1509.05763.

[14] J. He, Y.-H. Zong, S.-P. Kou, Y. Liang, and S. Feng,
Topological spin density waves in the Hubbard model on
a honeycomb lattice, Phys. Rev. B 84, 035127 (2011).

[15] J. He, Y. Liang, and S.-P. Kou, Composite spin liquid in a
correlated topological insulator: Spin liquid without spin-
charge separation, Phys. Rev. B 85, 205107 (2012).

[16] Y.-X. Zhu, J. He, C.-L. Zang, Y. Liang, and S.-P. Kou,
Magnetic topological insulators at finite temperature,
J. Phys. Condens. Matter 26, 175601 (2014).

[17] Y.-J. Wu, N. Li, and S.-P. Kou, Chiral topological super-
fluids in the attractive Haldane-Hubbard model with oppo-
site Zeeman energy at two sublattice sites, Eur. Phys. J. B
88, 255 (2015).

[18] D. Prychynenko and S. Huber, Z2 slave-spin theory of a
strongly correlated Chern insulator, Physica B (Amsterdam)
481, 53 (2016).

[19] H.-H. Hung, V. Chua, L. Wang, and G. A. Fiete, Interaction
effects on topological phase transitions via numerically
exact quantum Monte Carlo calculations, Phys. Rev. B
89, 235104 (2014).

[20] Y.-H. Zong, J. He, and S.-P. Kou, Quantum spin liquid in
interacting Kane-Mele model with staggered on-site
potential, Eur. Phys. J. B 86, 28 (2013).

[21] D. Pesin and L. Balents, Mott physics and band topology in
materials with strong spin-orbit interaction, Nat. Phys. 6,
376 (2010).

[22] M. Hohenadler, Z. Y. Meng, T. C. Lang, S. Wessel, A.
Muramatsu, and F. F. Assaad, Quantum phase transitions in
the Kane-Mele-Hubbard model, Phys. Rev. B 85, 115132
(2012).

[23] Y.-H. Chen, H.-H. Hung, G. Su, G. A. Fiete, and C. S. Ting,
Cellular dynamical mean-field theory study of an interacting
topological honeycomb lattice model at finite temperature,
Phys. Rev. B 91, 045122 (2015).

[24] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in
Graphene, Phys. Rev. Lett. 95, 226801 (2005).

[25] Y. C. Zhang, Z. Xu, and S. Zhang, Topological superfluids
and BEC-BCS crossover in attractive Haldane-Hubbard
model, arXiv:1511.03833.

[26] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions, Rev. Mod.
Phys. 68, 13 (1996).

[27] M. Caffarel and W. Krauth, Exact Diagonalization
Approach to Correlated Fermions in Infinite Dimensions:
Mott Transition and Superconductivity, Phys. Rev. Lett. 72,
1545 (1994).

[28] T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler,
Quantum cluster theories, Rev. Mod. Phys. 77, 1027 (2005).

[29] G. Kotliar, S. Y. Savrasov, G. Pálsson, and G. Biroli,
Cellular Dynamical Mean Field Approach to Strongly
Correlated Systems, Phys. Rev. Lett. 87, 186401 (2001).

[30] A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein,
Continuous-time quantum Monte Carlo method for fer-
mions, Phys. Rev. B 72, 035122 (2005).

[31] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M.
Troyer, and P. Werner, Continuous-time Monte Carlo meth-
ods for quantum impurity models, Rev. Mod. Phys. 83, 349
(2011).

[32] Z. Wang and S.-C. Zhang, Simplified Topological Invariants
for Interacting Insulators, Phys. Rev. X 2, 031008 (2012).

[33] Z. Wang and B. Yan, Topological Hamiltonian as an exact
tool for topological invariants, J. Phys. Condens. Matter 25,
155601 (2013).

[34] W. Witczak-Krempa, M. Knap, and D. Abanin, Interacting
Weyl Semimetals: Characterization via the Topological

PRL 116, 225305 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
3 JUNE 2016

225305-5

http://dx.doi.org/10.1016/j.physleta.2015.01.024
http://dx.doi.org/10.1103/PhysRevB.91.235108
http://dx.doi.org/10.1103/PhysRevB.91.235108
http://dx.doi.org/10.1103/PhysRevLett.98.046403
http://dx.doi.org/10.1103/PhysRevLett.98.046403
http://dx.doi.org/10.1103/PhysRevLett.97.046403
http://dx.doi.org/10.1103/PhysRevLett.97.046403
http://dx.doi.org/10.1103/PhysRevB.79.121103
http://dx.doi.org/10.1103/PhysRevLett.98.016402
http://dx.doi.org/10.1103/PhysRevLett.83.2014
http://dx.doi.org/10.1103/PhysRevLett.83.2014
http://dx.doi.org/10.1103/PhysRevB.63.235108
http://dx.doi.org/10.1103/PhysRevB.63.235108
http://dx.doi.org/10.1103/PhysRevLett.92.246405
http://dx.doi.org/10.1103/PhysRevLett.115.115303
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1038/nature13915
http://arXiv.org/abs/1509.05763
http://dx.doi.org/10.1103/PhysRevB.84.035127
http://dx.doi.org/10.1103/PhysRevB.85.205107
http://dx.doi.org/10.1088/0953-8984/26/17/175601
http://dx.doi.org/10.1140/epjb/e2015-60412-y
http://dx.doi.org/10.1140/epjb/e2015-60412-y
http://dx.doi.org/10.1016/j.physb.2015.10.027
http://dx.doi.org/10.1016/j.physb.2015.10.027
http://dx.doi.org/10.1103/PhysRevB.89.235104
http://dx.doi.org/10.1103/PhysRevB.89.235104
http://dx.doi.org/10.1140/epjb/e2012-30514-3
http://dx.doi.org/10.1038/nphys1606
http://dx.doi.org/10.1038/nphys1606
http://dx.doi.org/10.1103/PhysRevB.85.115132
http://dx.doi.org/10.1103/PhysRevB.85.115132
http://dx.doi.org/10.1103/PhysRevB.91.045122
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://arXiv.org/abs/1511.03833
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/PhysRevLett.72.1545
http://dx.doi.org/10.1103/PhysRevLett.72.1545
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/PhysRevX.2.031008
http://dx.doi.org/10.1088/0953-8984/25/15/155601
http://dx.doi.org/10.1088/0953-8984/25/15/155601


Hamiltonian and Its Breakdown, Phys. Rev. Lett. 113,
136402 (2014).

[35] T. Fukui, Y. Hatsugai, and H. Suzuki, Chern numbers in
discretized Brillouin zone: Efficient method of computing
(spin) Hall conductances, J. Phys. Soc. Jpn. 74, 1674
(2005).

[36] Q. Niu, D. J. Thouless, and Y.-S. Wu, Quantized Hall
conductance as a topological invariant, Phys. Rev. B 31,
3372 (1985).

[37] R. Resta, The insulating state of matter: A geometrical
theory, Eur. Phys. J. B 79, 121 (2011).

[38] C. N. Varney, K. Sun, M. Rigol, and V. Galitski, Topological
phase transitions for interacting finite systems, Phys. Rev. B
84, 241105 (2011).

[39] P. Törmä, Spectroscopies—theory, in Quantum Gas
Experiments—Exploring Many-Body States, edited by P.
Törmä and K. Sengstock (Imperial College Press, London,
2015).

[40] C. Hickey, L. Cincio, Z. Papić, and A. Paramekanti,
Haldane-Hubbard Mott Insulator: From Tetrahedral Spin
Crystal to Chiral Spin Liquid, Phys. Rev. Lett. 116, 137202
(2016).

[41] C. Hickey, P. Rath, and A. Paramekanti, Competing chiral
orders in the topological Haldane-Hubbard model of spin-
1=2 fermions and bosons, Phys. Rev. B 91, 134414 (2015).

[42] A. Liebsch and W. Wu, Coulomb correlations in the
honeycomb lattice: Role of translation symmetry, Phys.
Rev. B 87, 205127 (2013).

[43] S. Sorella, Y. Otsuka, and S. Yunoki, Absence of a spin
liquid phase in the Hubbard model on the honeycomb
lattice, Sci. Rep. 2, 992 (2012).

[44] R.-Q. He and Z.-Y. Lu, Cluster dynamical mean field theory
of quantum phases on a honeycomb lattice, Phys. Rev. B 86,
045105 (2012).

[45] J. Wu, J. P. L. Faye, D. Sénéchal, and J. Maciejko, Quantum
cluster approach to the spinful Haldane-Hubbard model,
Phys. Rev. B 93, 075131 (2016).

[46] A. Cuccoli, T. Roscilde, V. Tognetti, R. Vaia, and P.
Verrucchi, Quantum Monte Carlo study of s ¼ 1

2
weakly

anisotropic antiferromagnets on the square lattice, Phys.
Rev. B 67, 104414 (2003).

[47] A. Cuccoli, T. Roscilde, R. Vaia, and P. Verrucchi, Field-
induced XY behavior in the S ¼ 1

2
antiferromagnet on the

square lattice, Phys. Rev. B 68, 060402 (2003).
[48] Z. L. Gu, K. Li, and J. X. Li, Topological phase transitions

and topological Mott insulator in Haldane-Hubbard model,
arXiv:1512.05118.

[49] J. He, S.-P. Kou, Y. Liang, and S. Feng, Chiral spin liquid in
a correlated topological insulator, Phys. Rev. B 83, 205116
(2011).

[50] X.-J. Liu, Z.-X. Liu, K. T. Law, W. V. Liu, and T. K. Ng,
Chiral topological orders in an optical Raman lattice, New J.
Phys. 18, 035004 (2016).

[51] W. Zheng, H. Shen, Z. Wang, and H. Zhai, Magnetic-order-
driven topological transition in the Haldane-Hubbard
model, Phys. Rev. B 91, 161107 (2015).

PRL 116, 225305 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
3 JUNE 2016

225305-6

http://dx.doi.org/10.1103/PhysRevLett.113.136402
http://dx.doi.org/10.1103/PhysRevLett.113.136402
http://dx.doi.org/10.1143/JPSJ.74.1674
http://dx.doi.org/10.1143/JPSJ.74.1674
http://dx.doi.org/10.1103/PhysRevB.31.3372
http://dx.doi.org/10.1103/PhysRevB.31.3372
http://dx.doi.org/10.1140/epjb/e2010-10874-4
http://dx.doi.org/10.1103/PhysRevB.84.241105
http://dx.doi.org/10.1103/PhysRevB.84.241105
http://dx.doi.org/10.1103/PhysRevLett.116.137202
http://dx.doi.org/10.1103/PhysRevLett.116.137202
http://dx.doi.org/10.1103/PhysRevB.91.134414
http://dx.doi.org/10.1103/PhysRevB.87.205127
http://dx.doi.org/10.1103/PhysRevB.87.205127
http://dx.doi.org/10.1038/srep00992
http://dx.doi.org/10.1103/PhysRevB.86.045105
http://dx.doi.org/10.1103/PhysRevB.86.045105
http://dx.doi.org/10.1103/PhysRevB.93.075131
http://dx.doi.org/10.1103/PhysRevB.67.104414
http://dx.doi.org/10.1103/PhysRevB.67.104414
http://dx.doi.org/10.1103/PhysRevB.68.060402
http://arXiv.org/abs/1512.05118
http://dx.doi.org/10.1103/PhysRevB.83.205116
http://dx.doi.org/10.1103/PhysRevB.83.205116
http://dx.doi.org/10.1088/1367-2630/18/3/035004
http://dx.doi.org/10.1088/1367-2630/18/3/035004
http://dx.doi.org/10.1103/PhysRevB.91.161107

