
Inflationary Quasiparticle Creation and Thermalization Dynamics in Coupled
Bose-Einstein Condensates

Anna Posazhennikova,1,* Mauricio Trujillo-Martinez,2 and Johann Kroha2,3,†
1Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom

2Physikalisches Institut and Bethe Center for Theoretical Physics, Universität Bonn, Nussallee 12, D-53115 Bonn, Germany
3Center for Correlated Matter, Zhejiang University, Hangzhou, Zhejiang 310058, China

(Received 13 April 2016; published 2 June 2016)

A Bose gas in a double-well potential, exhibiting a true Bose-Einstein condensate (BEC) amplitude and
initially performing Josephson oscillations, is a prototype of an isolated, nonequilibrium many-body
system. We investigate the quasiparticle (QP) creation and thermalization dynamics of this system by
solving the time-dependent Keldysh-Bogoliubov equations. We find avalanchelike QP creation due to a
parametric resonance between BEC and QP oscillations, followed by slow, exponential relaxation to a
thermal state at an elevated temperature, controlled by the initial excitation energy of the oscillating BEC
above its ground state. The crossover between the two regimes occurs because of an effective decoupling of
the QP and BEC oscillations. This dynamics is analogous to elementary particle creation in models of the
early universe. The thermalization in our setup occurs because the BEC acts as a grand canonical reservoir
for the quasiparticle system.
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Common knowledge tells us that many-body systems
come to thermodynamic equilibrium by coupling to a heat
reservoir. However, how can an isolated quantum many-
body system eventually come to rest from a given initial
nonequilibrium state, and is the final state a thermal one?
This is a long-standing problem, which has recently
received intense interest [1,2], inspired by the high degree
of isolation and control possible in ultracold quantum gases
[3,4]. While the unitary time evolution of an isolated
quantum system rigorously prohibits the maximization
of the total entropy, effective thermalization is generically
observed [3,4].
Several mechanisms have been put forward in order to

resolve this contradiction, most notably the eigenstate
thermalization hypothesis (ETH) [5,6]. It conjectures that
for a sufficiently complex quantum system the thermal
average of an observable at a given average energy is
practically indistinguishable from its expectation value in
an eigenstate of the system with that energy. The ETH has
been verified numerically for generic, nonintegrable sys-
tems and typical observables [7,8], and was found to fail
for integrable systems [8,9] with some exceptions [10].
Another mechanism may be termed subsystem thermal-
ization hypothesis (STH). It relies on the fact that, even
though total entropy maximization is not possible, sub-
systems may thermalize by exchanging energy and/or
particles with other parts of the system, so that averages
of local quantities may be thermal. This mechanism has
been successfully invoked [11] even for integrable and
nearly integrable systems exhibiting prethermalization
dynamics [11–14]. The STH is also at the heart of hydro-
dynamic behavior, where physical quantities first relax to

local averages and then evolve slowly, under the rule of
local conservation laws. However, a unified understanding
of thermalization has not been reached, and the thermal-
ization mechanism seems to depend strongly on the type of
system [8–17].
In the present work we investigate the thermalization

dynamics of an interacting Bose gas trapped in a double-
well potential which supports a true Bose-Einstein con-
densate (BEC), initially performing nonequilibrium
Josephson oscillations between the two wells [18–21].
This is a prototype of a nonintegrable system with a natural
subsystem structure, namely, the BEC and the system of
incoherent excitations of Bogoliubov quasiparticles (QPs).
The existence of a true BEC phase precludes the system to
be one-dimensional. Therefore, and because of the large
particle number considered, numerically exact methods,
like the time-dependent density-matrix renormalization
group (t-DMRG) [12,15], are not applicable here.
Moreover, the slow thermalization dynamics found below
requires evolving the system to large times, difficult to
reach by these methods. Instead, the nonequilibrium
Keldysh-Bogoliubov formalism in the grand-canonical
ensemble is appropriate here, since the BEC acts as a
particle reservoir for the QP system (and vice versa).
We find rich dynamics, governed by three different time

scales. After an initial period of undamped Josephson
oscillations [22,23], QPs are created in an avalanche
manner (QP creation time, τc) due to a dynamically
generated parametric resonance between the Josephson
frequency and the QP excitation energies. This leads to
a fast depletion as well as damping of the BEC amplitude
[24]. When the final number of QP excitations, allowed by
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total energy conservation, is reached, however, the QP
system effectively decouples from the BEC oscillations
(freeze-out time of the BEC, τf), and the total QP number
becomes nearly conserved. Under this approximate con-
servation law the system enters into a quasihydrodynamic
regime which is characterized by slow, exponential relax-
ation of the QP system into a thermalized state (thermal-
ization time, τth). We prove this behavior by a detailed
spectral analysis of the oscillatory behavior in the different
time regimes.
Model and formalism.—The Bose gas is described by the

Hamiltonian

H ¼
Z

drΨ̂†ðr; tÞ
�
−
∇2

2m
þ Vextðr; tÞ

�
Ψ̂ðr; tÞ

þ g
2

Z
drΨ̂†ðr; tÞΨ̂†ðr; tÞΨ̂ðr; tÞΨ̂ðr; tÞ; ð1Þ

where Ψ̂ðr; tÞ is a bosonic field operator, and g ¼ 4πas=m
is a contact interaction constant, with as the s-wave
scattering length. Vext is the external double-well trap
potential. This system is known to exhibit Josephson
oscillations [18–20]. In our approach the condensate is
described within a semiclassical two-mode approximation
[18], while the QP dynamics are described quantum
mechanically [22,23]. We now represent Ψ̂ðr; tÞ in terms
of the complete basis B ¼ fφ−;φþ;φ1;φ2;…φMg of the
exact single-particle eigenstates of VextðrÞ after the cou-
pling between the wells is turned on at t ¼ 0 by suddenly
lowering the barrier between the wells [23]. Hence, for
times t > 0

Ψ̂ðr;tÞ¼ϕ1ðrÞa1ðtÞþϕ2ðrÞa2ðtÞþ
XM
n¼1

φnðrÞb̂nðtÞ: ð2Þ

The first two terms in Eq. (2) constitute the usual two-mode
approximation [18], i.e., ϕ1 and ϕ2 are symmetric and
antisymmetric superpositions of φ− and φþ, the ground
state and the first excited state of VextðrÞ. Hence, the wave
function of ϕ1 (ϕ2) is localized in the left (right) potential
well, and aαðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
NαðtÞ

p
exp½iθαðtÞ�, α ¼ 1, 2, are the

corresponding BEC amplitudes. This Bogoliubov substi-
tution neglects phase fluctuations in the ground states of
each of the potential wells which is justified for sufficiently
large BEC particle numbers, NαðtÞ ≫ 1, e.g., for the
experiments [19]. For the excited states, φn,
n ¼ 1; 2;…;M, the full quantum dynamics are taken into
account by the bosonic creation and destruction operators
b̂†n, b̂n.
For t > 0 the Hamiltonian of our system is

H ¼ Hcoh þHJ þHcoll. Hcoh includes all coherent, local
contributions, i.e., all terms which are bilinear in the b̂n
operators and local in the well index α ¼ 1, 2,

Hcoh ¼ ε0
X2
α¼1

a�αaαþ
U
2

X2
α¼1

a�αa�αaαaαþ
XM
n¼1

εnb̂
†
nb̂n

þK
X2
α¼1

XM
n;m¼1

�
a�αaαb̂

†
nb̂mþ 1

4
ða�αa�αb̂nb̂mþH:c:Þ

�
;

ð3Þ

whereU andK are positive interaction constants, and εn are
the energies of the M equidistant levels of the double well,
separated by the trap frequency, εn ¼ nΔ. For simplicity we
neglect here and in the following a possible level depend-
ence of the coupling constants.
HJ encompasses the Josephson terms, which are still

coherent but nonlocal in the well index,

HJ ¼ −Jða�1a2 þ a�2a1Þ þ J0
XM
n;m¼1

½ða�1a2 þ a�2a1Þb̂†nb̂m

þ 1

2
ða�1a�2b̂nb̂m þ H:c:Þ�: ð4Þ

The terms proportional to J0 constitute QP-assisted tunnel-
ing between the wells.
Finally, the nonlinear collisional terms Hcoll account for

QP interactions,

Hcoll ¼
U0

2

X
n;m¼1

X
l;s¼1

b̂†mb̂
†
nb̂lb̂s

þ R

�X2
α¼1

X
n;m;s¼1

a�αb̂
†
nb̂mb̂s

þ
X2

α;β;γþ1

X
n¼1

a�αa�βaγb̂n þ H:c:

�
ð5Þ

The time evolution of this system is described in
terms of the condensate population imbalance, zðtÞ ¼
½N1ðtÞ − N2ðtÞ�=½N1ðtÞ þ N2ðtÞ�, the phase difference
between the BECs, θðtÞ and the QP occupation numbers
n1ðtÞ; n2ðtÞ;…; nMðtÞ. They can be calculated from the
classical C and the quantum G parts of the two-time
Green’s functions following standard field-theoretical
techniques [25,26],

Cαβðt1;t2Þ¼−i
�aαðt1Þa�βðt2Þ aαðt1Þaβðt2Þ
a�αðt1Þa�βðt2Þ a�αðt1Þaβðt2Þ

�
;

Gnmðt1;t2Þ¼−i
�hTCb̂nðt1Þb̂†mðt2Þi hTCb̂nðt1Þb̂mðt2Þi
hTCb̂

†
nðt1Þb̂†mðt2Þi hTCb̂

†
nðt1Þb̂mðt2Þi

�
;

ð6Þ

where T̂C denotes time-ordering along the Keldysh contour.
The Dyson equations for these functions read

PRL 116, 225304 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
3 JUNE 2016

225304-2



Z
C
dt̄½G−1

0 ðt1; t̄Þ−SHFðt1; t̄Þ�Cðt̄; t2Þ¼
Z
C
dt̄Sðt1; t̄ÞCðt̄; t2Þ;

ð7Þ

Z
C
dt̄½G−1

0 ðt1; t̄Þ − ΣHFðt1; t̄Þ�Gðt̄; t2Þ

¼ 1δðt1 − t2Þ þ
Z
C
dt̄Σðt1; t̄ÞGðt̄; t2Þ: ð8Þ

In Eqs. (7), (8), the first-order (Hartree-Fock) self-energies
SHF, ΣHF describe time-dependent level renormalizations,
while the second-order collisional self-energy contributions
S, Σ induce damping of the QP and BEC oscillations. The
Dyson equations are expressed in terms of the spectral
function Anmðt1; t2Þ ¼ i½G>

nmðt1; t2Þ −G<
nmðt1; t2Þ� and

the statistical function Fnmðt1; t2Þ ¼ ½G>
nmðt1; t2Þ þ

G<
nmðt1; t2Þ�=2 ¼ GK

nmðt1; t2Þ=2 and the corresponding
self-energies (see Supplemental Material [27]). We solve
the resulting integrodifferential equations numerically for
total number of particles Ntot, level spacing Δ, interactions
U, U0, K, J0, R and initial conditions zð0Þ, θð0Þ, with all
particles being initially in the BEC, N1ð0Þ þ N2ð0Þ ¼ Ntot.
All energies are expressed in units of J: u ¼ UNtot=J,
u0 ¼ U0Ntot=J, k ¼ KNtot=J, j0 ¼ J0Ntot=J, r ¼ RNtot=J.
In the numerical evaluations we limit the number of levels
which can be occupied by the QPs to M ¼ 5.
BEC and QP dynamics.—Figure 1 shows the dynamics

of incoherent excitations for a typical parameter set, given
in the figure caption. The time-dependent occupation
numbers of allM ¼ 5 levels, n1; n2;…; nM, and their total,

ntotðtÞ ¼
XM
m¼1

nmðtÞ ¼ −
XM
m¼1

�
ImFGmmðt; tÞ −

1

2

�
; ð9Þ

are shown. Here FGmm is the regular (upper diagonal)
component of the equal-time statistical Green’s function
Fmm in Bogoliubov space (see Supplemental Material
[27]). From Fig. 1 one can readily identify three different
dynamical regimes, (I) an early regime of undamped
Josephson oscillations without QPs for t < τc [22,23],
(II) a fast growth regime of the QP population, and (III)
a regime of slow relaxation to a stationary state for long
times. In the regimes (II) and (III) the nmðtÞ and ntotðtÞ
oscillate around their respective running mean values,
nm;avgðtÞ and navgðtÞ (averaged over one oscillation period;
smooth lines on top of the oscillating ones). To analyze the
functional dependence of this time evolution, we show in
Fig. 2 logarithmic plots of the deviation of the total running
mean navgðtÞ from its final value navgð∞Þ (upper panel) and
the momentary oscillation amplitude ΔnðtÞ ¼ ntotðtÞ −
navgðtÞ (middle panel) along with the BEC population
imbalance zðtÞ (lower panel). All three quantities show a
steep crossover from the fast growth regime (II) to the slow
relaxation regime (III) at a freeze-out time scale τf, with
exponential relaxation for t > τf.

FIG. 1. Dynamics of incoherent excitations for zð0Þ ¼ 0.6,
θð0Þ¼ 0, and Δ¼ 9, u¼ u0 ¼ 5, j0 ¼ 40, r¼ 300, Ntot ¼ 5×105.
nm is the occupation number of themth level, ntot is the sum of all
M ¼ 5 levels. All occupation numbers shown are normalized by
the total particle number Ntot. The three different dynamical
regimes, separated by the characteristic times τc and τf, are
marked, as explained in the text. The inset shows an enlargement
of the long-time behavior.

FIG. 2. Logarithmic plots of the relaxation behavior of the QP
system (upper two panels) and of the BEC population imbalance
(lower panel), see text. The dashed vertical line marks the freeze-
out time τf where the BEC system and the system of incoherent
excitations effectively decouple. The thin, black lines are guides
to the eye. The insets show the respective linear plots, for
illustration.
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What are the mechanisms for fast growth (II) and slow
relaxation (III), and how is the steep crossover time τf
determined? A spectral analysis provides detailed insight
into these problems.We introduce the usualWigner “center-
of-motion” (COM) time t ¼ ðt1 þ t2Þ=2 and difference time
τ ¼ ðt1 − t2Þ and Fourier transform the two-time Green’s
functions AGðt1;t2Þ¼

P
nA

G
nnðt1;t2Þ and FGðt1;t2Þ¼P

nF
G
nnðt1;t2Þ with respect to τ. In Fig. 3 (upper and middle

panels) we plot the frequency-dependent absolute values of
AGðω; tÞ≡ AðωÞ and FGðω; tÞ≡ FðωÞ in the long-time
regime, t ¼ 9.01=J > τf. As expected, the spectra exhibit
M ¼ 5 approximately Lorentzian peaks corresponding to
the five renormalized QP levels. They mark the Rabi
oscillation frequencies of the nonequilibrium QP system.
Note that, at any instant t of the time evolution, themaximum
time interval available for τ is necessarily finite,−2t < τ< 2t
(see Supplemental Material [27]). This limits the frequency
resolution of the Fourier transform to 2π=4t and results in the
wiggly modulations of the Lorentzian peaks. For τc < t< τf
the spectra look similar, however, with reducedω resolution
(not shown). Figure 3 (lower panel) displays the power
spectra of the BEC population imbalance zðtÞ, Fourier

transformed with respect to t for τc < t < τf [red curve,
regime (II)] and for t > τf [blue curve, enlarged by a factor
10, regime (III)], respectively.
Inflationary QP creation.—In the fast growth regime

(II), the BEC oscillation spectrum zðωÞ overlaps strongly
with the QP spectrum jAðωÞj and has even maxima at the
renormalized Rabi frequencies. This signals a dynamically
generated, parametric resonance, and the strong, resonant
QP-BEC coupling leads to the inflationary QP generation
observed in Fig. 1.
Approach to stationary state.—In the long-time regime

(III), the behavior is strikingly different: the spectrum of
the BEC oscillations exhibits a single, sharp peak of
substantially reduced weight which has almost no
overlap with the QP spectrum. In fact, the BEC oscillation
frequency is close to the Josephson frequency ωJ∞
of a semiclassical, interacting BEC, i.e. without locking
to the QP oscillations. ωj∞ may be estimated as [18],

ωJ∞≈2Jeff
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þuJ=ð2JeffÞ

p
, where Jeff¼Jþntotðt→∞ÞJ0

is the QP-enhanced Josephson coupling. It is marked in
Fig. 3 by the thick, vertical line. Therefore, in the long-time
regime the BEC system performs nearly free, weakly
damped (due to the sharpness of the spectral peak)
oscillations at nearly its own eigenfrequency ωJ∞.
That is, for t > τf the BEC and the QP subsystems are
effectively decoupled.
The mechanism for this freeze-out of BEC oscillations

may now be interpreted as a combination of total energy
conservation and a maximum entropy principle in the QP
subsystem. The latter implies that ntotðtÞ can essentially not
decrease (up to small oscillations induced by the BEC
driving). The energy EQPðtÞ of the QP subsystem increases
continuously with the occupation numbers nmðtÞ, but is
limited by the maximum energy that can be provided by the
BEC system, i.e., by the difference between the BEC
energies in the initial and in the final state, ΔEBEC ¼
EBECðt ¼ 0Þ − EBECðt → ∞Þ (see Supplemental Material
[27]). We find numerically that EQPðtÞ indeed approaches
this maximum value at t ≈ τf. Hence, for t > τf, ntotðtÞ and
EQPðtÞ become approximately conserved in the grand
canonical sense, i.e., particle and energy exchange with
the BEC are allowed, but the time averages are approx-
imately constant; cf. Fig. 1. As a consequence, the resonant
dynamics of the BEC and the QP systems must decouple,
as seen from Fig. 3. Under these dynamically generated,
approximate conservation laws the system enters into a
quasihydrodynamic regime, characterized by slow, expo-
nential relaxation, where only a redistribution of QPs
between the individual QP levels occurs.
Thermalization.—To test if the long-time stationary state

is a thermal one, we calculate the QP distribution bðεn; tÞ
for different COM times t. It is defined via the Green’s
functions [25] by Fðω; tÞ ¼ ð−i=2Þ½2bðω; tÞ þ 1�Aðω; tÞ
and, hence, is obtained for each level from the
Lorentzian weights wA;n, wF;n of these levels (cf. Fig. 3) as

FIG. 3. Absolute values of spectral (upper panel) and statistical
(middle panel) functions, Fourier transformed with respect to
τ ¼ ðt1 − t2Þ for a fixed value of t ¼ ðt1 þ t2Þ=2 ¼ 9.01=J. The
thin, black lines represent Lorentzian fits. The weights w of each
of the M ¼ 5 Lorentzians are shown in the insets. In the lower
panel the power spectrum zðωÞ of the BEC population imbalance
is shown for τc ≲ t≲ τf (red line) and for t > τf (blue line). The
vertical lines indicate renormalized QP energies. ωJ∞ is the
Josephson frequency estimated for the decoupled, quasihydrody-
namic regime (see text).

PRL 116, 225304 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
3 JUNE 2016

225304-4



bð~εn; tÞ ¼
wF;n

wA;n
−
1

2
: ð10Þ

~εn, n ¼ 1;…;M, are the level energies, renormalized by
interactions. As shown in Fig. 4, bð~εn; tÞ continuously
approaches a thermal distribution. For large t this happens
only by a redistribution of weights among the levels,
without total particle number increase. For even longer
times the agreement with a thermal distribution will be even
better, since, e.g., the occupations n2ðtÞ, n3ðtÞ are still
growing, while n5ðtÞ is still decreasing even for the longest
time shown, as seen in Fig. 1. As expected, the final-state
temperature T is high, since it is controlled by the initial
BEC excitation energy, ΔEBEC ∼ zð0Þ2NtotJ, which is a
macroscopically large quantity.
To conclude, the system of coupled, oscillating BECs

and incoherent excitations thermalizes, because the con-
densates serve as a heat reservoir for the quasiparticle
subsystem. The condensate oscillations, in turn, get
damped by quasiparticle collisions. By studying the system
dynamics we found a steep coupling-decoupling crossover
of the condensate and the quasiparticle subsystems at the
freeze-out time scale τf. Prior to τf, the condensate and the
quasiparticles are strongly coupled as a result of a dynami-
cally generated parametric resonance. For times t > τf,
BEC and incoherent excitations exhibit off-resonant behav-
ior and are effectively decoupled. This freeze-out occurs as
a consequence of total energy conservation and entropy
maximization in the quasiparticle subsystem. In the off-
resonant regime, the quasiparticle system relaxes slowly to
a thermalized state with thermalization time τth ≫ τf. The
BEC freeze-out and subsequent time evolution under a
conservation law are reminiscent of prethermalization
found in low-dimensional, nearly integrable systems.
However, here the conservation law is generated dynami-
cally in a nonintegrable system. The quasiparticle dynamics
bears similarities to models for the resonant creation and

subsequent freeze-out of elementary particles during the
evolution of the early universe [28].
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