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Ultracold fermions in one-dimensional, spin-dependent nonoverlapping optical lattices are described by
a nonstandard Hubbard model with next-nearest-neighbor correlated hopping. In the limit of a kinetically
constraining value of the correlated hopping equal to the normal hopping, we map the invariant subspaces
of the Hamiltonian exactly to free spinless fermion chains of varying lengths. As a result, the system exactly
manifests spin-charge separation and we obtain the system properties for arbitrary filling: ground state
collective order characterized by a spin gap, which can be ascribed to an unconventional critical hole
superconductor associated with finite long range nonlocal string order. We study the system numerically
away from the integrable point and show the persistence of both long range string order and spin gap for
appropriate parameters as well as a transition to a ferromagnetic state.
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Introduction.—Understanding the collective behavior of
many particle systems is the essence of contemporary many
body physics. One-dimensional (1D) systems hold a
special place in this effort [1], where enhanced quantum
fluctuations are particularly important. These systems are
amenable to exact, analytical, and precise numerical
methods revealing exotic physics, e.g., Luttinger liquids
and associated spin-charge separation [2–5], fractional
excitations [6], or nonlocal symmetry breaking [7,8].
A particularly interesting lattice model of fermions is

HH ¼P
<i;j>;σ¼↑;↓c

†
iσcjσ½−JþXðniσ̄þnjσ̄Þ�þU

P
ini↑ni↓

(ciσ annihilates a spin-σ fermion in the Wannier orbital
centered on site i, niσ is the fermion number, and σ̄ is the
spin opposite to σ). Diagonal and off-diagonal particle
interactions lead to the repulsion U and nearest neighbor
correlated hopping (CH) X, respectively [9]. −J is the
hopping integral. Such CH has been intensively studied,
particularly in d > 1 dimensions, as a mechanism for
unconventional (nonphonon mediated) superconductivity
[10,11], especially at weak to moderate values of the CH
integral X. Large X ∼ J inhibits certain tunnelling proc-
esses similarly to large repulsion U [12,13]. For X ¼ J, the
on-site interaction term is conserved. This facilitates an
exact solution in 1D [14–17], revealing nonperturbative
effects such as a paramagnetic Mott transition and exclu-
sion statistics [18]. An incommensurate singlet supercon-
ducting phase appears in proximity to X ¼ J [19,20].
While in physical systems typically X ≪ J with sgnðXÞ ≠
sgnðJÞ [21–23], fast, strong, periodic modulation of the
Feshbach-resonance controlled interaction U [24] has been

proposed as a path to the extreme regime X ∼ J in optical
lattice systems.
Recently, exquisite control over single particle dynamics

has been demonstrated in shifted, spin-dependent lattices
[25–27]. This paves the way to study many body effects in
these systems. While hitherto unnoticed (see Supplemental
Material [28]), maximally separating the lattices available
to the two spin species yields a strong next-nearest
neighbor CH. We predict numerous exotic properties of
this system in particular via an exact solution as well as by
numerical means: nonvanishing string order, a gapless
lowest excitation spectrum, a spin gap associated with
collective hole pairing, and transition to a simple ferro-
magnetic state.
The model.—A spin dependent optical lattice setup with

a red and blue detuned sublattice offset by half a lattice
constant each trapping a single neutral fermion spin (or
Tonks-Girardeau boson [35–38]) species ↑ and ↓, respec-
tively, is described by the Hamiltonian

H ¼
X
i

ð−J þ Xniþ1Þc†i ciþ2 þ H:c:þ
X
i

Vniniþ1; ð1Þ

where odd (even) sites correspond to the blue (red)
sublattice for ↓ð↑Þ spins. We consider equal length L
sublattices. The two sublattices together define a zigzag
lattice (ZL) in Eq. (1). The hopping J > 0 connects next
nearest neighbors, as does the CH (X) which is conditioned
on the occupation of the intervening site, while V is the
nearest neighbor repulsion. The derivation of these bare
parameters, as well as a protocol facilitating their large

PRL 116, 225303 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
3 JUNE 2016

0031-9007=16=116(22)=225303(5) 225303-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.116.225303
http://dx.doi.org/10.1103/PhysRevLett.116.225303
http://dx.doi.org/10.1103/PhysRevLett.116.225303
http://dx.doi.org/10.1103/PhysRevLett.116.225303


tunability is presented in the Supplemental Material [28].
We note here that unlike in Ref. [24], the bare CH can be
strong X ∼ J in the system Eq. (1) without external driving.
Exact solution at X ¼ J, V ¼ 0 for open boundary

conditions (OBCs).—For X ¼ J, the free hopping and
CH cancel for the interchange of a nearest neighbor pair
of ↑ and ↓ spins [−J þ X ¼ 0 in Eq. (1)]. For a system of
Nt particles, define a spin sequence Σi ¼ ðσ1; σ2;…; σNt

Þi
as the order of the spins of the particles (σl ¼ ↑ or ↓ is the
lth particle’s spin) from left to right on the ZL. The
impossibility of switching ↑ and ↓ fermions and OBC,
i.e., hard wall boundaries, implies conservation of each
sequence Σi. Hence, (i) for any Nt, the Hamiltonian H can
be diagonalized in each invariant Σi sector, i.e.,
H ¼ ⊕Σi

HΣi
, and (ii) for V ¼ 0, eachHΣi

, i.e.,H restricted
to configurations on the ZL with fixed Σi, acts as con-
strained hopping: a particle can hop with amplitude −J
onto available empty sites on its sublattice until it reaches
the next particle on the ZL.
To illustrate the action of HΣi

, note that there are only
two types of generic segments, O1 (where σl ¼ σlþ1) and
O2 (where σl ≠ σlþ1), between two consecutive particles l
and lþ 1 in configurations on the ZL. In the example ofO1
below, the number of holes between the particles is initially
d ¼ 5. The hoppingHΣi

allows h ¼ ðd − 1Þ=2 ¼ 2 hops of
particle 1 towards particle 2 before being blocked by the
latter:

In the example of O2 below, d ¼ 4 holes initially separate
the particles. The hoppingHΣi

allows h ¼ d=2 ¼ 2 hops of
particle 1 towards particle 2 after which it is blocked.

Hence effectively the spacing (number of holes) between
the two particles is reduced under the action of HΣi

. More
generally, note that the ZL structure dictates that each
allowed single hop of a particle towards or away from
another particle (or edge) changes the separation between
them by 2 on the ZL. So, the number of holes d is always
odd for O1 type segments, and always even for O2 type
segments on the ZL. Generalizing the example above, the
number of holes dl on the ZL between particles l, lþ 1
maps to the corresponding effective number of holes hl
available for hopping as

dl ↦ hl ¼ ðdl=2Þδσl;σ̄lþ1
þ δσl;σlþ1

ðdl − 1Þ=2; ð2Þ
where δa;b is the Kronecker Delta and l ¼ 1; 2;…; Nt − 1.
The segments of particle 1 with σ1 ¼ ↑ð↓Þ from the left
edge of the ZL and particle Nt with σNt

¼ ↓ð↑Þ from the
right edge, have odd (even) number of holes [see Figs. 1(a)
and 1(b)] and so are of type O1 (O2). These edge cases are
consistently treated in Eq. (2) as d0 ↦ h0 and dNt

↦ hNt

using two fixed auxiliary boundary variables σ0 ¼ ↑ and
σNtþ1 ¼ ↓.
By replacing the set of holes d ¼ fdlg in ZL configu-

rations with the corresponding effective number of
holes h ¼ fhlg, one obtains configurations defined on a
fictitious lattice—the charge lattice (CL). From Eq. (2), the
total number of holes in the CL is ðD0 −M0Þ=2 where D0

is the number of holes on the ZL and M0ðΣiÞ ¼ δ↑σ1 þPNt−1
l¼1 δσl;σlþ1

þ δσNt ;↓
is the number of segments of type

O1 determined by the sequence Σi. The total number of
holes and particles yields

LeffðΣiÞ ¼ Nt þ ðD0 −M0Þ=2 ¼ Lþ ðNt −M0Þ=2 ð3Þ

whereD0 ¼ 2L − Nt, forNt particles on 2L sites of the ZL.
Leff is hence a conserved property of Σi and defines the
length of the CL for this sequence.
The above map can easily be uniquely reversed for any

configuration on the CL using Σi:
O1. If σl ¼ σlþ1, then dl ¼ 2hl þ 1. hl holes on the σl

sublattice follow the σl particle and hl þ 1 holes are placed
on the other sublattice between these particles. For σ1 ¼ ↑,
d0 ¼ 2h0 þ 1 with h0 holes preceding it on the ↑ sublattice
and the first h0 þ 1 sites occupied by holes on the ↓
sublattice. The case σNt

¼ ↓ is analogous.
O2. If σl ≠ σlþ1, dl ¼ 2hl where hl holes follow the σl

particle on the σl sublattice and hl holes precede the σlþ1

particle on the σlþ1 sublattice. For σ1 ¼ ↓, d0 ¼ 2h0 with
h0 holes preceding it on the ↓ sublattice and h0 holes
occupy the beginning of the ↑ lattice. Analogously, one
obtains the map for σNt

¼ ↑.
So, the CL particle positions ðp1; p2;…; pNt

Þ transform
to ZL positions ðq1; q2;…; qNt

Þ as

qlþ1 ¼ ql þ Alþ1
l δσlσlþ1

þ Blþ1
l δσlσ̄lþ1

þ 1 ð4Þ

where the number of holes dl between particles l and lþ 1

are Alþ1
l ¼ 2ðplþ1 − plÞ − 1 or Blþ1

l ¼ 2ðplþ1 − plÞ − 2

and q1 ¼ ð2p1 − 1Þδσ1;↓ þ 2p1δσ1;↑.

(a) (b)

FIG. 1. Examples of the configurational mapping from a
2L ¼ 16-site zigzag lattice (ZL) to the charge lattice (CL) for
OBC. ↓ (↑) particles are filled circles on the lower (upper) rail of
the ZL. Arrows beyond the edges of the ZL are the auxiliary fixed
boundary variables needed for the classification of boundary
segments in the mapping. (a) Nt ¼ 6 particles in the sequence
Σ ¼ ð↓↑↓↓↑↑Þ. There are d ¼ ð2; 0; 2; 3; 2; 1; 0Þ holes inter-
jected by particles from the left to right edge on the ZL. SoM0 ¼
2 and the length Leff ¼ 10. From Eq. (2), h ¼ ð1; 0; 1; 1; 1; 0; 0Þ
holes on the CL. (b) Nt ¼ 7 and Σ ¼ ð↑↑↓↓↑↑↓Þ with d ¼
ð3; 1; 0; 3; 0; 1; 0; 1Þ holes. So Leff ¼ 9 (M0 ¼ 5). Using Eq. (2),
h ¼ ð1; 0; 0; 1; 0; 0; 0; 0Þ.
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Note that the particles in configurations on the CL bear
no reference to the spin flavor—the spin information is
solely in the sequence Σi. The arguments in O1 and O2,
and the 1-to-1 nature of the mapping implies that the action
of eachHΣi

on the ZL is identical to a free nearest neighbor
hopping Hamiltonian (with tunnelling J) on a CL of length
LeffðΣiÞ. Hence our mapping manifests exact spin-charge
separation. The many body eigenstates (eigenenergies)
correspond to all distributions of Nt fermions over the
Leff single particle eigenstates (energy levels) of the free
hopping model. The mapping Eq. (4) transforms these into
the original ZL coordinates. Mapping each HΣi

to its CL
thus exactly solves H ¼ ⊕Σi

HΣi
.

Although the quasiparticles are noninteracting spinless
fermions in each sequence, the interplay of the spectra of
various spin sequences determine the system’s properties.
We characterize the ground state and excitations below.
(i) For a given sequence Σi, the lowest energy is obtained

by filling the Fermi sea of the CL model with Nt particles
on Leff sites, yielding the thermodynamic limit value
E0=Leff ¼ −ð2J=πÞ sinðπNt=LeffÞ. The lowest energy per
ZL site is e0 ¼ E0=L ¼ −2J sin ½2πρL�=ðπLÞ, where ρ ¼
Nt=ð2LÞ is the original fermion density and L ¼ L=Leff .
(ii) While all considerations can be carried out for

arbitrary fillings, we restrict to even Nt ¼ 2N from now
on. The global ground state energy of H is obtained by
minimizing the ground state energies of all possible
sequences Σi. The global ground state is that of the
sequence Σ0 ¼ j↓↑↓↑…↓↑i with perfect antiferromag-
netic spin order, since one obtains the lowest possible CL
particle density for maximal Leff ¼ Lþ N ðM0 ¼ 0Þ. Lack
of reflection symmetry about a horizontal line through the
middle of the ZL, makes the order not degenerate with
respect to flipping all spins. The Z2 transformed sequence
j↑↓↑↓↑…↓i yields a shorter Leff ¼ Lþ N − 1 (M0 ¼ 2)
with higher energy due to higher CL density.
(iii) Antiferromagnetic order in the spin sector implies

ideal hidden nonlocal string order in the real lattice [39]:
each fermion is always followed by a different spin fermion
separated arbitrarily. This is analogous to string order in
spin-1 Heisenberg chains [7]. We stress that there is no
local symmetry breaking of the density wave type accom-
panying this string order—the ground state is translation-
ally invariant (modulo OBC) since it corresponds to a free
nearest neighbor hopping chain.
(iv) The manifest spin-charge separation implies two

types of excitations w.r.t the global ground state (ii). The
first are charge excitations above the Fermi sea in the
spinless fermion model for fixed sequence. The second are
spin excitations, obtained by flipping spins. These excita-
tions correspond to domain walls in the spin sequence in
analogy to well-known excitations of the 1D Heisenberg
antiferromagnetic model. A domain wall is present between
two like consecutive spins in a sequence. Similarly there is
a domain wall before (or after) the first (last) spin if it is
σ1 ¼ ↑ (σNt

¼ ↓). This equips the quantum number M0 in

Eq. (3) with a physical meaning as the number of domain
walls in an excited spin sequence.
(v)While the charge spectrum is gapless for each sequence

Σi, there is a spin gap—the energy cost associated with
flippingone spinwith respect to the ground state sequenceΣ0.
A single spin flip shortens the CL to Leff ¼ Lþ N − 1
ðM0 ¼ 2Þ. This change shifts all single particle energies
leading, in the thermodynamic limit, to a nonzero spin gap
ΔS ¼ 2Jðsin r − r cos rÞ=π, (see Supplemental Material
[28]) for arbitrary filling densities where r ¼ 2πρ=ðρþ 1Þ.
Because of the same length change, exchanging a pair of
nearest fermions in Σ0 entails the same energy cost.
(vi) A revealing aspect of the sequence Σ0 containing the

global ground state is that in any configuration all holes are
unambiguously bound into nearest neighbor pairs [see
examples in Figs. 2(a) and 2(b)]. Because of this, single
particle motion is equivalent to the coherent motion of
paired holes in the opposite direction. Furthermore, the
finite spin gapΔS (v) is in the paired hole picture the energy
of breaking a hole-pair [see Fig. 2(c)]. Such a spin gap for
all densities is a feature of superconductors, so this suggests
that the ground state of H is an exotic hole superconductor.
To support this view, we obtain the superconducting

correlations (SCs) of the bound hole pairs. While these
can be directly calculated via our exact solution [38], we
present a more insightful argument for the SC asymptotics.
The bound hole pairs occupy edges of the ZL [see
Figs. 2(a) and 2(b)]. Nearest neighbor edges of the ZL
define its dual lattice (see Fig. 2). Now, any allowed hopping
of a single particle in the Hamiltonian HΣ0

on the ZL is
effectively the hopping of a hole-pair on the dual lattice.
There is an exclusion constraint forbidding the occupation of
two bound hole pairs on nearest neighbor sites of the dual
lattice as evident from Figs. 2(a) and 2(b). Hence HΣ0

¼P
iJðσ†i σiþ1 þ H:c:Þ þ Jz=4ðσzi þ 1Þðσziþ1 þ 1Þ takes the

form of a spin-1=2 XXZ model at fixed magnetization m
on the dual lattice. The spin σzi ¼ 1ð−1Þ defines the
occupation (lack) of a paired hole, and the repulsion
Jz ¼ ∞. The magnetization m ¼ −ρ=2 (see Supplemental

FIG. 2. (a),(b) In the sequence Σ0 hosting the global ground
state, nearest neighbor holes are uniquely paired in all configu-
rations (above). Each single particle hop is equivalent to a hole-
pair hop—e.g., two single hops lead from (a) to (b). (Below) The
bound hole-pairs (green) are fictitious particles (filled squares)
that hop on the edges (squares) of the ZL. Unique pairing of holes
(above) implies simultaneously occupied nearest neighbor sites
on the dual lattice are forbidden, i.e., infinite repulsion Jz of
paired holes. (c) A single spin flip in the sequence Σ0 breaks a
bound hole pair leading to the spin gap.
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Material [28]). The ground state of theXXZmodel is known
to be a Luttinger liquid. The off-diagonal SCs of the paired
holes in the ZL clearly correspond to the dual lattice
transverse spin correlation function. Using known bosoni-
zation results for the latter, we have (see Ref. [1]) for large
separations x ≫ 1: hcxþ1cxc

†
0c

†
1iZL ¼ hσþðxÞσ−ð0Þidual ¼

C cosðπρxÞx−2K−1=ð2KÞ þ C0 cosðπxÞx−1=ð2KÞ, where C and
C0 are constants. This is in agreementwith the lack of explicit
symmetry breaking in 1D, where at most quasilong range,
i.e., algebraically decaying, SCs can exist. The SC decay is
density dependent via the Luttinger parameter K which
increases from 1=4 for ρ → 0 to 1 for ρ → 1 [1].
Robustness of the string ordered phase.—The finite spin

gap suggests that the features of the exactly solvable point
should be rather general. Note, however, that V ¼ ∞ must
lead to a phase separated “ferromagnetic” (FM) ground
state with two separated domains of like fermions or a
single species domain, as this minimizes the interaction
energy. To first analyze the transition between V ¼ 0 and
V ¼ ∞ for fixed X ¼ J, we introduce the conserved
parameter for fixed spin sequences:

O ¼
X2L
j¼1

X
j0>j

njQj;j0nj0eiπðj−j
0þ1Þ; ð5Þ

where Qj;j0 ¼
Q

j0>l>jð1 − nlÞ for j0 > jþ 1 or Qj;j0 ¼ 1

where j, j0 are subsequent sites. The summand assigns
þ1ð−1Þ to a consecutive pair of the same (different) spins
on the lattice. So, O ¼ 2N − 1 is maximal for ideal string
ordered configurations and O ¼ 3 − 2N for the FM state.
Figure 3(a) shows that for arbitrary densities, a large region
of stability of ideal string order (and thus collective hole
pairing) is followed by a first order transition to the FM
state for V < 2J in the ground state of H [Eq. (1)].
For X ≠ J, the spin sequence is subject to dynamical

changes. Moving to the X ≠ J regime, we restrict to
X=J ≤ 1 due to the symmetry X → 2J − X of the model
Eq. (1) [38]. Without CH (X ¼ 0, V ≠ 0) an interaction
driven, direct liquid to phase-separation jump transition
for arbitrary fillings occurs [42]. So, we shall not consider
here the similar effect of V ≠ 0 but rather the fate of the
string ordered state for V ¼ 0. First, note that the spin
gap ΔS is always open for X > 0 [Fig. 3(b)] indicating
hole pairing and long range string correlations for
arbitrary low values of CH. To probe the long range nonlocal
hidden order for general X ≠ J, we introduce a den Nijs-
Rommelse–type string parameter [8,39]OS in analogy to the
string parameter capturing diluted antiferromagnetic order
in spin-1 antiferromagntic chains [7]. Grouping pairs of
nearest neighbor sites into dimers ð1; 2Þ; ð3; 4Þ;…;
ð2L − 1; 2LÞ, define the operator Szi ¼ ðn2i − n2i−1Þ with
valuesþ1, 0,−1 in analogywith a spin-1 Sz operator, so that

OSðm;m0Þ ¼
�
Szm exp

�
iπ

X
m<l<m0

Szl

�
Szm0

�
: ð6Þ

Figures 3(c) and 3(d), show thatOS attains a finite value for
ideal string order at X ¼ J. Reducing X yields a diminish-
ing, yet finite large distance saturation value of OS for
X ≠ 0 with no evidence of destruction of long range string
order beforeX ¼ 0. Results in Figs. 3(c) and 3(d) are for two
chosen densities; however, we have checked that this
behavior is generic.
Final comments.—Our exact solution, in combination

with numerical results, reveals an instability of two fer-
mionic chains, flowing from the extreme coupling pointX ¼
J which dominates the physics of the system Eq. (1). Both
the phenomenology and exact solution of our model are
fundamentally distinct from that of the standard bond charge
modelHH [14–20]. The latter for X ¼ J is also solvable by
mappings to free fermions within invariant subspaces ofHH
labeled by separately conserved sequences of ↑ and ↓
fermions, and ↑↓ (doublons) and 0 (holes). Each spinless
fermion lattice is identical to the original lattice, leading to a
huge spectral degeneracy with respect to all permutations
within these sequences. In our solution, the intricate
dependence of the effective lattice length (available single
particle states) on the conserved sequences substantially
reduces analogous degeneracies and is behind the system’s
properties. Finally,wemention that a supersymmetricmodel
with a complex valued 3-site CHwas exactly solved recently
using the involved nested Bethe-ansatz method [43].
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FIG. 3. Exact diagonalization (ED) (a),(b) and TEBD algorithm
[40,41] (c),(d) results. (a) O vs V for X ¼ J where 2N ¼ 8,
2L ¼ 20 (black), 2N ¼ 8, 2L ¼ 24 (red), 2N ¼ 6, 2L ¼ 24

(blue). (b) Extrapolated spin gap Δð∞Þ
S to thermodynamic limit

by fitting finite size gaps with quadratic polynomials in 1=L
(using sizes up to 2L ¼ 30) for ρ ¼ 1=2 (red) and ρ ¼ 1=3 (blue)
for V ¼ 0. (c),(d) Finite size scaling OS vs distance x under
OBC for different densities and V ¼ 0. Data are for X ¼ 1.0J
(diamonds), 0.6J (circles), 0.3J (squares), 0.0J (triangles).
Compared are lattice lengths 2L ¼ 24 (blue), 2L ¼ 48 (red)
and 2L ¼ 60 (green) for every X.
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