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We explore the quantum dynamics of a bright matter-wave soliton in a quasi-one-dimensional bosonic
superfluid with attractive interactions. Specifically, we focus on the dissipative forces experienced by the
soliton due to its interaction with Bogoliubov excitations. Using the collective coordinate approach and the
Keldysh formalism, aLangevin equation ofmotion for the soliton is derived from first principles. The equation
contains a stochastic Langevin force (associated with quantum noise) and a nonlocal in time dissipative force,
which appears due to inelastic scattering of Bogoliubov quasiparticles off of the moving soliton. It is shown
that Ohmic friction (i.e., a term proportional to the soliton’s velocity) is absent in the integrable setup.
However, the Markovian approximation gives rise to the Abraham-Lorentz force (i.e., a term proportional to
the derivative of the soliton’s acceleration), which is known from classical electrodynamics of a charged
particle interactingwith its own radiation. TheseAbraham-Lorentz equations famously contain a fundamental
causality paradox, where the soliton (particle) interacts with excitations (radiation) originating from future
events. We show, however, that the causality paradox is an artifact of the Markovian approximation, and our
exact non-Markovian dissipative equations give rise to physical trajectories. We argue that the quantum
friction discussed here should be observable in current quantum gas experiments.
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In recent years, solitons and solitonlike textures have
been the subject of much interest and research in quantum
superfluids [1] and optical fibers [2,3]. The hallmark
features of solitons are their remarkable robustness and
stability, which stem from the integrability of the under-
lying nonlinear model. However, solitons in realistic
environments experience dissipative forces and eventually
decay. Their quasiclassical motion can be well described by
Newton’s equation [4]

MẌ ¼ −∂XU þ F½XðtÞ�; ð1Þ

where X is the soliton’s position,M is its effective mass, and
the right-hand side contains external forces due to a confining
potential U and the friction force F½XðtÞ�. The standard
Ohmic frictionwithF½X� ¼ −γ _X has been considered before
by many researchers [5–13]. It can be shown that the friction
coefficient γ is proportional to an integral of the reflection
coefficients of the Bogoliubov excitations off the soliton [5].
However, there is a nontrivial caveat in pristine integrable
setups, where the soliton represents a reflectionless potential
for excitations. Hence, if integrability is preserved, Ohmic
friction is strictly absent. This has motivated the authors of
Refs. [6–9] to introduce integrability-breaking terms to
induce a nonzero friction coefficient γ.
Here we revisit this question of soliton dissipation in

superfluids, and ask: are there dissipative forces acting on a
moving soliton in the perfectly integrable model? Naively,
by the above argument there should be none because

the soliton appears blind to the surrounding cloud of
Bogoliubov excitations. We show that this is not the full
story and intrinsic, albeit non-Ohmic, friction does exist
even if integrability is not broken. It turns out that this
problemhas a distant cousin in electrodynamics: if a charged
particle ismoving in an external potential, it is accelerated by
the potential and loses energy by emitting electromagnetic
radiation. The corresponding classical equation of motion
(EOM) contains the Abraham-Lorentz force, FAL ∼ R⃛,
giving rise to a famous paradox—the solutions to
Abraham-Lorentz equations violate causality (see Refs.
[14–23] for a modern point of view and historical perspec-
tives). In this work, we show that the problem of a moving
soliton is similar and contains both the Abraham-Lorentz
paradox and its resolution by accounting for retardation
effects [21–23]. There are two key processes, which con-
tribute to intrinsic soliton friction: emission of quasiparticles
when accelerating (for dark solitons moving in the presence
of gapless phonons) and inelastic scattering of emitted or
thermal quasiparticles. In this work, we focus specifically on
the simpler case of bright solitons [1,24–26], for which only
the latter mechanism plays out. Our main result—the
soliton’s EOM—is presented below:

MẌðtÞ þ
Z

t

0

dt0ηðt − t0Þ _Xðt0Þ ¼ −∂XU þ fsðtÞ; ð2Þ

where ηðtÞ is the dissipation kernel and fsðtÞ is a
stochastic Langevin force. Its correlation function,
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CsðtÞ ¼ hfsðtÞfsð0Þi, and ηðtÞ are linked through the same
spectral function via fluctuation-dissipation theorem:

ηðtÞ ¼ 2

π

Z
∞

0

dω
JðωÞ
ω

cos ðωtÞ; ð3Þ

CsðtÞ ¼
2ℏ
π

Z
∞

0

dωJðωÞ coth
�
ℏω
2T

�
cos ðωtÞ: ð4Þ

An analytic expression for the spectral function of
Bogoliubov excitations is derived in Eq. (15) (see also
Fig. 1). The Markovian limit [i.e., where ηðt − t0Þ is
approximated by a local-in-time delta function or its
derivatives] of the dissipation force in Eq. (2) contains
no Ohmic friction, but gives rise to the Abraham-Lorentz-
type force, F½X� ∼ X⃛, and noncausal soliton trajectories.
However, solutions of Eq. (2) with the full non-Markovian
dissipative force contain no causality paradox.
Our starting point is a (1þ 1)-dimensional field theory,

describing a Bose gas with attraction:

L ¼
Z

dx

�
ϕ�iℏ∂tϕ −

ℏ2

2m
j∇ϕj2 þ μjϕj2 − g1

2
jϕj4
�
; ð5Þ

wherem is the mass of the atoms and μ < 0 is the chemical
potential. In the context of realistic (quasi-)one-dimensional
experiments, the interaction parameter g1 ¼ 2πℏ2a=ml2⊥,
where a is the 3D scattering length, l⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mω⊥
p

, andω⊥
is the transverse harmonic confinement frequency [27].
Importantly, in both 1D and quasi-1D, the interaction

part scales as 1=L with system size (L) and balances the
kinetic energy (∼1=L2). This implies that (in contrast to
higher dimensions) the attractive Bose gas in one dimen-
sion is stable against collapse [1,28]. The attractive non-
linear mean-field interaction energy favors aggregation of
particles and counteracts the dispersion of the wave packet.
This leads to the formation of a bright soliton, where a
Bose-Einstein condensate is localized in a lump of matter
with a size set by the coherence length ξ ¼ ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffi
2mjμjp

. The
bright soliton solution ϕ0ðxÞ is obtained by minimizing the
Lagrangian [Eq. (5)]; i.e., it solves the Gross-Pitaevskii
equation. For a soliton with N particles, the wave function
is given by [29,30]

ϕ0ðxÞ ¼
ffiffiffiffiffi
N
2ξ

r
eiθsech

�
x − X
ξ

�
: ð6Þ

Here, θ and X are the phase and the coordinate of
the soliton. Note that the energy of a static soliton is
independent of θ and X. We consider small-amplitude
fluctuations on top of the soliton background, and write
the field ϕðx; tÞ ¼ ϕ0ðxÞ þ δϕðx; tÞ, where the soliton
wave function ϕ0 is defined in Eq. (6). The linear correc-
tion vanishes, as ϕ0 solves the Gross-Pitaevskii
equation. The quadratic correction to the Lagrangian is
δL ¼ 1=2

R
dxΨ†½iℏσ3∂t − KBdG�Ψ, where we define

Ψ ¼ ðδϕ; δϕ�ÞT and KBdG is the positive semidefinite
Bogoliubov–de Gennes kernel:

KBdG ¼
 
−ℏ2∇2

2m −μþ2g1jϕ0j2 g1ϕ2
0

g1ϕ�2
0 −ℏ2∇2

2m −μþ2g1jϕ0j2

!
: ð7Þ

The diagonalization proceeds in a similar way as for trapped
Bose-Einstein condensates [29,31,32]: finite-energy excita-
tions solve the BdG equationKBdGjki¼ σ3εkjkiwith energy
εk ¼ ℏ2k2=2mþ jμj and wave function jki ¼ ðuk;−vkÞT
given by [33,34]�

uk
−vk

�
¼ eikx

ðk2ξ2 þ 1Þ
�
e−iθ½kξþ i tanhðx=ξÞ�2

−eiθsech2ðx=ξÞ

�
: ð8Þ

Here we assume N and μ to be given. Formally, BdG
equations have eigenvalues with negative energies −εk
and wave functions jki ¼ ð−v�k; u�kÞT . In addition, there
are two zero modes given by jθi ¼ ðϕ0;−ϕ�

0Þ and jXi ¼
−ξ∂xðϕ0;ϕ�

0Þ, corresponding to a small change in the phase
and the soliton position, respectively. In the following, we
neglect the phase degree of freedom sincewe are interested in
only the soliton dynamics. The zero modes cannot be treated
as a small perturbation. The correct way to treat them non-
perturbatively is via the collective coordinatemethod [35,36].
Since the zero modes have vanishing norm, they cannot

be included in the basis set that diagonalizes KBdG. Instead,
the space of BdG excitations is supplemented by adjoint
modes with nonzero norm, chosen as

KBdGjXai ¼ ℏ2

Mξ2
σ3jXi; ð9Þ

where the mass M is chosen such that the adjoint modes
have unit overlap with the corresponding zero modes. For
the zero mode of soliton spatial translations, the adjoint

FIG. 1. (a) Spectral function of the bath formed by Bogoliubov
quasiparticles JðωÞ ¼ JscðωÞ þ JacðωÞ (red line) and the con-
tribution of creation or annihilation processes JacðωÞ to it (dashed
blue line). (b) The low-frequency part of (a) with the asymptotics
JMðωÞ (dashed purple line) given by Eq. (16). J0 is a constant
defined after Eq. (16).
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mode is jXai ¼ −x=Nξðϕ0;−ϕ�
0Þ with mass M ¼ mN.

Now we promote the soliton coordinate to a quantum
dynamical variable XðtÞ and present the bosonic field
ϕðx; tÞ in terms of the complete basis set (quasiparticle
eigenmodes and the adjoint to the zero mode of trans-
lations) as follows:

ϕðx; tÞ ¼ ϕ0½x − XðtÞ� þ i
ξπ0
ℏ

uaX½x − XðtÞ�
þ
X
k

fckðtÞuk½x − XðtÞ� − c�kðtÞv�k½x − XðtÞ�g: ð10Þ

Here π0 is the bare momentum of the soliton without
Bogoliubov quasiparticles. After substitution of Eq. (10) to
the original Lagrangian Eq. (5) and integrating out π0,
we get [37]

L ¼ M _X2

2
þ πqp _X þ

X
k

c�k½iℏ∂t − ϵk�ck: ð11Þ

Here πqp is the total momentum of Bogoliubov quasipar-
ticles, while the momentum of the soliton in their presence
is given by πs ¼ M _X þ πqp. The explicit form of πqp is
given by

πqp¼
1

2

X
k;k0

ðc�k;ckÞ
� hkjσzp̂jk0i −hkjσzp̂jk0i
−hkjσzp̂jk0i hkjσzp̂jk0i

��
ck0

c�k0

�
; ð12Þ

where p̂ ¼ −iℏ∂x is the momentum operator. Diagonal
components πsc correspond to scattering of quasiparticles,
while nondiagonal components πac correspond to their
annihilation and creation. Using the explicit form of wave
functions Eq. (8), they can be found as follows:

πsck0k ¼
πℏ
3ξ

ðk2 − k02Þðk02 þ k0kþ k2 þ k2ξÞ
ðk02 þ k2ξÞðk2 þ k2ξÞ sinh½π2 ξðk0 − kÞ� ; ð13Þ

πack0k ¼
πℏ
3ξ

ðkþ k0Þ2ðk02 − k0kþ k2 þ k2ξÞ
ðk02 þ k2ξÞðk2 þ k2ξÞ sinh½π2 ξðk0 þ kÞ� ; ð14Þ

where we introduce the wave vector scale kξ ¼ ξ−1. It
should be noted that, due to the integrability of the original
problem, the backscattering is suppressed: πsck;−k ¼ 0.
The Lagrangian Eq. (11) describes a motion of the

soliton and Bogoliubov quasiparticles coupled with each
other. The coupling term, Lint ¼ πqp _X, is a new and
important result of our work. The soliton is a quasiclassical
entity while Bogoliubov quasiparticles can be treated as a
quantum bath. The coupling with the bath leads to the
friction and Langevin force in the EOM of the soliton
Eq. (2). To derive such quasiclassical dissipative dynamics
is an old, fundamental problem, which arises in the context
of Brownian motion and the general Caldeira-Leggett
model [43]. However, since the coupling of the collective
soliton coordinate to the bath is quadratic here, the problem
at hand is more complicated than the Caldeira-Leggett

model (where the coupling to the bath is linear and the
model is exactly solvable; see also Refs. [44,45]). We have
derived the quasiclassical EOM as the saddle point of a
one-loop effective action in the Keldysh formalism [46,47].
Formally, this corresponds to an expansion of the full action
in terms of the soliton velocity, _X=c ≪ 1, where c ¼ ℏ=mξ
is a characteristic velocity scale in the model. Detailed
technical calculations are presented in Supplemental
Material [37], while here we present the main results—
Eq. (2), which represents the quasiclassical Langevin
EOM for the soliton. It is in effect Newton’s second law
for the soliton in the potential UðXÞ, supplemented with a
retarded friction force, F½XðtÞ� ¼ −

R
t
0 dt

0ηðt − t0Þ _Xðt0Þ,
and a stochastic force, fsðtÞ. The dissipation kernel ηðtÞ
and correlation function hfsðtÞfsð0Þi are related via the
fluctuation-dissipation theorem and are expressed [see
Eqs. (3) and (4)] through the same spectral function
JðωÞ given by

JðωÞ ¼ 2π
X
kk0

�
2jπsckk0 j2ðfk0 − fkÞðε−kk0 Þ2δðε−kk0 − ℏωÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

scattering processes

þ jπackk0 j2ð1þ fk0 þ fkÞðεþkk0 Þ2δðεþkk0 − ℏωÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
annihilation and creation processes

�
; ð15Þ

where ε�kk0 ¼ εk � εk0 and fk ¼ fBðεkÞ is the Bose-Einstein
distribution. The first term Jsc in Eq. (15) corresponds to
the scattering of Bogoliubov quasiparticles, while the
second term Jac originates from their annihilation and
creation processes. Their dependencies on frequency are
presented in Fig. 1. The ω dependence of Jac weakly
depends on temperature T and has a threshold 2jμj=ℏ,
which is the minimal energy to create a pair of Bogoliubov
quasiparticles in the superfluid of attractive bosons. At low
frequencies only Jsc survives. It does not have an Ohmic
component (which would be linear in frequency), but is
super-Ohmic:

JMðωÞ ¼
16

9π

mℏω3

jμj e−jμj=T ¼ J0ðωτÞ3; ð16Þ

where τ ¼ ℏ=jμj and J0 ¼ 16m=9πτ2 exp½−jμj=T�. Note
that a super-Ohmic spectral function also appears for an
impurity embedded to a bosonic superfluid [10,48]. To get
better insight into the origin of this effect (absence of
Ohmic friction), we rewrite the linear-in-ω part of the
spectral function JscðωÞ as follows:

JscðωÞ ¼
Z

dενðεÞνðεþ ωÞ½fBðεÞ − fBðεþ ωÞ�

×Sðεþ ω; εÞ ≈ ω

Z
∞

−∞
dεν2ðεÞSðε; εÞ

�
−
∂fB
∂ε
�
; ð17Þ

where νðεÞ ¼ 1=πξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijμjðϵ − jμjÞp

is the density of states of
Bogoliubov quasiparticles and we introduced
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S ¼ 2π

νðε1Þνðε2Þ
X
k0k

jπsckk0 j2ðϵ−k;k0 Þ2δðϵk − ε1Þδðϵk0 − ε2Þ;

which can be interpreted as the probability of scattering of
quasiparticles with energies ε1 and ε2. From Eq. (17), we
see that Ohmic friction comes exclusively from elastic
scattering, which in 1D is equivalent to backscattering.
However, as can be seen from Eq. (13), integrability en-
sures that πsck;−k ¼ 0. Hence, backscattering is forbidden—
and there is no Ohmic friction.
The dynamics of the soliton at macroscopic time scales

t ≫ τ is determined by the low-frequency part of the
Fourier transform of the dissipation kernel ηðωÞ. Its low-
frequency asymptotics ωτ → 0 correspond to Markovian
approximation and local-in-time EOM. The real part
η0ðωÞ ¼ JðjωjÞ=jωj ≈ J0ω2τ3, which is even and breaks
time-reversal invariance at the quasiclassical level, is
responsible for friction and originates from the scattering
contribution to the spectral function Jsc. The imaginary part
of the dissipation kernel η00ðωÞ ¼ −iδMω is odd in fre-
quency and is responsible for the mass renormalization
M → M þ δM. The mass renormalization, however, is
small with δM=M ∼ N−1 and can be neglected. The
resulting EOM of the soliton in a trap with frequency ωt
is in the Markovian approximation given by

Ẍ − τALX⃛þ ω2
t X ¼ fsðtÞ=M: ð18Þ

The term F½X� ¼ τALMX⃛ (with τAL ¼ J0τ3=M≈16τ=9πN
here) can be recognized as the Abraham-Lorentz friction
force, originally derived in the context of electrodynamics
(where it describes the backreaction of electromagnetic
radiation emitted by a charged particle on its motion). In
our context, inelastic scattering of Bogoliubov quasipar-
ticles play the role of the radiation. The Abraham-Lorentz
equation is plagued by spurious “runaway” solutions
and its regularization has been a controversial and long-
standing problem [16,17]. The equation violates causality,
which can be seen by calculating the response function
χ−1ðωÞ ¼ M½ω2

t − ω2ð1þ iτALωÞ� of the soliton coordi-
nate to the stochastic or external force XðωÞ ¼ χðωÞfsðωÞ.
The response function is supposed to be analytical in the
upper half-plane, while it has the spurious pole ωAL ≈ iτ−1AL,
as is depicted in Fig. 2(b).
Note as a crucial point that the breaking of causality is an

artifact of the Markovian approximation. Indeed, the
location of the unphysical pole jωALjτ ≈ 9πN=16 ≫ 1 is
beyond the applicability of the Markovian approximation,
which requires ωτ ≪ 1. For regularization, consider
the spectral function J�MðωÞ ¼ J0ðωτÞ3e−ωτ� , where we
parametrize its high-frequency part by a memory time τ�.
The spectral function qualitatively captures the time
dependence of the exact dissipation kernel, as is presented
in Fig. 2(a). The exact expression for the response function
χðωÞ, corresponding to the spectral function J�MðωÞ, is

given by χ−1ðωÞ ¼ Mfω2
t − ω2 − iτALω3½coshðωτ�Þþ

2π−1 coshðωτ�ÞSiðiωτ�Þ − 2iπ−1 sinhðωτ�ÞCið−iωτ�Þ�g,
where Cið−iωτ�Þ and Siðiωτ�Þ are cosine and sine integral
functions. The response function is analytical in the upper
half-plane, which ensures causality. Note also that the
Abraham-Lorentz equation can be regularized by treating
super-Ohmic friction as a perturbation, which leads to
Ẍ þ τALω

2
t
_X þ ω2

t X ¼ ðfs þ τAL _fsÞ=M. The resulting res-
ponse function is analytical in the upper half-plane with
poles ω ≈�ωt − iτALω2

t [see Fig. 2(c)]. In the presence
of a trap potential the Abraham-Lorentz friction is well
approximated by the usual friction, F½X� ¼ −τALω2

t M _X.
Most importantly, this implies that the effective friction
force is very sensitive to the trap frequency ωt and can
be distinguished in this way from regular (extrinsic)
Ohmic friction, which appears due to the breaking of
integrability [7].
In realistic experiments, the Abraham-Lorentz friction

competes with the usual Ohmic friction. The Ohmic friction
appears due to the quasi-one-dimensional nature of the
trapping potential [7], or due to interactions between
Bogoliubov quasiparticles [8]. However, the latter is a
two-particle effect and is proportional to exp½−2jμj=T�
instead of exp½−jμj=T�, which makes it unimportant at
low temperatures. For estimates, we use the following
parameters corresponding to the experiments in Ref. [24]:
particle number in the soliton N ≈ 1.5 × 103; coherence
length ξ ≈ 1.7 μm; chemical potential and temperature jμj≈
2T ≈ 11 nK; axial trap frequency ωt ≈ 2π × 70 Hz; trans-
verse confinement and scattering length, l⊥ ¼ 1.4 μm and

(b) (c)

(a)

FIG. 2. (a) Time dependence of the friction kernel ηðtÞ,
corresponding to the exact spectral function, given by Eq. (15)
(red line), and to the approximate one, given by J�M ¼
J0ðωτÞ3 exp½−ωτ�� (dashed blue line), at T ¼ μ and τ� ¼ 3τ.
(b) Poles in the complex plane ω ¼ ω0 þ iω00 of the response
function χðωÞ in the Markovian approximation leading to the
Abraham-Lorentz friction force. In the upper half-plane there is
the spurious pole corresponding to causality violation. (c) Poles
of the response function χðωÞ calculated exactly for the spectral
function J�M or in the Markovian approximation, if the Abraham-
Lorentz force is treated as perturbation. Note that there is no
unphysical pole in the upper half-plane of ω.
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a ¼ 0.44 nm. The resulting decay times of the soliton are of
comparablemagnitude and given by τALs ¼9πNτexp½jμj=T�=
16πðωtτÞ2≈187s and τOs ≈ πNτ exp½jμj=T�ðjμjx2 þ TÞ2=
2Tμ2x4 ≈ 400 s, where τ ¼ ℏ=jμj and x ¼ Na=l⊥.
Nevertheless, two mechanisms of friction can be distin-
guished in the experiment because τALs ∼ ω−2

t strongly
depends on the axial trap frequency, while τOs is sensitive
only to the transverse confinement ω⊥. This implies that the
quantum soliton friction predicted in this work is within
current experimental capabilities.
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