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We find a new class of metastable de Sitter solutions in compactifications of six-dimensional supergravity
motivated by type IIB or heterotic string vacua. Two Fayet-Iliopoulos terms of a local U(1) symmetry are
generated bymagnetic flux and by the Green-Schwarz term canceling the gauge anomalies, respectively. The
interplay between the induced D term, the moduli dependence of the effective gauge coupling, and a
nonperturbative superpotential stabilizes the moduli and determines the size of the extra dimensions.
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Introduction.—The observed accelerated expansion of
the universe [1] is most easily explained by a constant
vacuum energy density, the characteristic feature of de
Sitter space. This has led to an intense search for de Sitter
vacua in supergravity and superstring theories, which
represent attractive extensions of the standard model of
particle physics. Although much progress has been made,
challenging questions still remain [2].
A particularly attractive proposal by Kachru, Kallosh,

Linde, and Trivedi (KKLT) [3] is based on quantized fluxes
in type IIB string theory and additional nonperturbative
effects stabilizing the overall volume modulus. These
features are captured in the KKLT superpotential that
yields an anti-de Sitter minimum. To achieve the required
“uplift” to de Sitter space additional ingredients are needed
such as anti-D3 branes [3,4], D terms induced by magnetic
flux [5–7], a gauged R symmetry [8,9], or T-branes [10].
Alternatively, additional matter fields have to be added
allowing for an F term uplift (see, e.g., Refs. [11,12]).
Also extensions of the KKLT proposal, such as the
Large Volume Scenario [13] or Kähler Uplift [14,15]
need additional ingredients to achieve an uplift to de
Sitter vacua.
Conditions for de Sitter vacua in four-dimensional

supergravity theories derived from string theory compacti-
fications have previously been analyzed in Refs. [16,17]. In
particular, constraints on the Kähler potential, and in the
case of gauged shift symmetries, on the associated Fayet-
Iliopoulos (FI) terms, have been derived [18]. For a related
discussion of de Sitter and Minkowski vacua in string
theory see, for instance, Refs. [6,19–23].
In this Letter, we study de Sitter vacua in six-dimensional

supergravity models, compactified on orbifolds with flux.
Such models have been suggested as an intermediate step in
string compactifications to four dimensions [24]. Our
results represent an application of our work [25,26]. The
crucial ingredients are the flux and the Green-Schwarz term
of an anomalous local U(1) symmetry. They lead to two
Fayet-Iliopoulos terms of opposite sign, and they modify
the gauge kinetic function. Together with a nonperturbative
KKLT-type superpotential one naturally obtains de Sitter

vacua, without any additional degrees of freedom below the
flux induced mass scale. In the following we derive
relations between the superpotential parameters and de
Sitter vacua in moduli space and give an explicit example.
Conditions for de Sitter vacua.—In this work we con-

sider a simpleN ¼ 1 supergravity model [27] that has been
derived as the effective four-dimensional Lagrangian for
flux compactifications of six-dimensional supergravity
[25,26]. It contains three chiral multiplets, S, T, U, and
the real vector multiplet V of a U(1) gauge symmetry. The
Kähler potential is given by

K ¼ − logðSþ Sþ iXSVÞ − logðT þ T þ iXTVÞ
− logðU þUÞ; ð1Þ

where XS;T are purely imaginary and constant Killing
vectors parameterizing a gauged shift symmetry. Note that
the Kähler potential is of no-scale type, i.e., KiKijKj ¼ 3,

where i ðjÞ denotes the derivative with respect to the ith

chiral (jth antichiral) multiplet andKij is the inverse Kähler
metric.
To completely define the gauge sector one further has to

specify the gauge kinetic function H, whose real part h
corresponds to the effective gauge coupling. In the follow-
ing it will be crucial that, in addition to the classical term
linear in S, the gauge kinetic function contains a second
part linear in T,

H ¼ hSSþ hTT: ð2Þ
A T dependence is known to arise due to quantum
corrections [29,30]. Following the convention S¼ 1

2
ðsþ icÞ,

T ¼ 1
2
ðtþ ibÞ, one has h ¼ 1

2
ðhSsþ hTtÞ. Finally, we have

to specify the superpotential. It has to be gauge invariant and
can therefore only depend on the linear combination

Z ¼ −iXTSþ iXST ≡ 1

2
ðzþ i~cÞ; ð3Þ

where in a first step, we ignore the shape modulus U. For
reasons discussed abovewe consider a KKLT-type potential,
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WðZÞ ¼ W0 þW1e−aZ; ð4Þ
where, without loss of generality we choose a > 0, W0 and
W1 to be real. The third modulus U can be stabilized by
inclusion of a term W2 exp ð−a0UÞ in the superpotential.
However, the resulting equations are considerably more
involved than in the two moduli case. They will be given
in Ref. [26].
In the following it will be important that the parameter

hT in the gauge kinetic function is negative while the
classical contribution hS is positive. Furthermore, the two
Killing vectors have to be of opposite sign. As we shall see
in the next section, both conditions are satisfied in flux
compactifications of 6D supergravity. The line along which
hðs; tÞ ¼ 0 divides the moduli space into a physical (h > 0)
and an unphysical region (h < 0). The physical region thus
satisfies the condition

t < tðhÞ ¼ −
hS
hT

s: ð5Þ

The scalar potential is a sum ofF- andD-term contributions,

V ¼ VF þ VD ¼ eKðKijDiWDjW − 3jWj2Þ þ g2

2h
D2; ð6Þ

whereDiW ¼ Wi þ KiW is the Kähler covariant derivative
of the superpotential and g is a gauge coupling, resulting in
g=

ffiffiffi
h

p
as the effective gauge coupling. TheD term is given in

terms of the Killing vectors,

D ¼ iKiXi ¼ −
i
s
XS −

i
t
XT: ð7Þ

Becauseof their opposite sign,D ¼ 0 defines a second line in
ðs; tÞ space given by

tðDÞ ¼ −
XT

XS s: ð8Þ

If this line is not part of the physical region in moduli space,
i.e., jXT=XSj ≥ jhS=hT j, the D-term potential is positive
definite. This is the situation we want to study in the
following.

Solutions of the equations of motion leading to
Minkowski or de Sitter vacua have to fulfill

∂SV ¼ 0; ∂TV ¼ 0; V ¼ ϵ ≥ 0; ð9Þ

which yield three relations between the F-term and D-term
contributions to the potential. It is convenient to use the
linear combinations ∂� ¼ s∂S � t∂T instead of ∂S;T .
Derivatives of the superpotential then produce the factors
∂−Z ¼ stD and ∂þZ ¼ stE, where

E ¼ iKTXT − iKSXS ¼ −
i
t
XT þ i

s
XS: ð10Þ

In terms ofD and E the scalar potential can be written in the
compact form

V ¼ st
2
ðD2 þ E2ÞA − EBþ g2

2h
D2; ð11Þ

with

A ¼ j∂ZWj2 ¼ a2W2
1e

−az; ð12Þ

B ¼ 2Reð∂ZWWÞ

¼ −2aW1

�
W1e−az þW0e−ða=2Þz cos

�
a
2
~c

��
: ð13Þ

Note that the term −3jWj2 in the scalar potential Eq. (6) has
disappeared due to the no-scale structure of the Kähler
potential. Choosing opposite signs for W0 and W1, the
axion ~c is stabilized at zero, and in the following we set the
cosine term to one. The orthogonal axion gives a mass to
the U(1) vector field via the Stueckelberg mechanism [25].
In order to find minima we invert the problem and solve

for the superpotential parameters in terms of s and t. In this
way we can see which superpotential parameters lead to
minima in the ðs; tÞ plane for realistic parameter ranges.
The conditions for extrema Eq. (9) yield three relations
between the superpotential parameters and the position
ðs; tÞ of the extrema in moduli space. A straightforward
calculation leads to

A ¼ −
1

2h2stð1 − ρ2Þ
�
hTtρþ hð2 − ρþ ρ2Þ þ h2

2ϵ

E2

�
;

B ¼ −
E

4h2ð1 − ρ2Þ
�
hTtρð1þ ρ2Þþhð2 − ρþ ρ2 − ρ3 þ 3ρ4Þ þ h2

8ϵ

E2

�
;

a ¼ −
2Eð1 − ρ2Þ

stðE2½hTtρð1þ ρ2Þ þ hð2 − ρþ 5ρ2 − ρ3 − ρ4Þ� þ 8h2ρ2ϵÞ ½hTtρþ hð2 − ρ − 3ρ2Þ�; ð14Þ
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where we have introduced the ratio ρ ¼ D=E ∈ ð−1; 1Þ.
The quantities on the rhs of these equations, h, E, and ρ,
only depend on the values of the moduli fields s and t,
whereas A, B, and a are related to the superpotential by the
definitions Eq. (12) and Eq. (13).
Equations (14) can now be used to identify consistency

conditions for the existence of de Sitter vacua and to construct
explicit solutions. A similar discussion for pure F-term
breaking has recently been carried out in Ref. [31]. From
Eq. (12) we see that A has to be positive, and by definition
a > 0. Furthermore,B > 0 is needed for a cancellation of the
positive contributions in the potential Eq. (11), thus allowing
for a vanishing or small cosmological constant. From
Eqs. (14) one reads off that these conditions can be satisfied
if hT < 0. The reason is that the terms proportional to h,
which would give the unwanted sign, can be made small due
to the opposite sign of the two contributions hSs and hTt.
Given a solution for a chosen extremum at ðs; tÞ, one then has
to examinewhether the obtained values for h, a,W0, andW1

are physically meaningful.
The de Sitter solutions obtained this way correspond to

metastable vacua since the familiar runaway solution at
infinity has zero energy density. Because of the similarity
with the KKLT model one expects no further vacua. We
have checked this numerically for various sets of super-
potential parameters and we have indeed found no other
minima. Let us finally emphasize again that the obtained
Minkowski and de Sitter minima are a consequence of the
opposite signs of the moduli contributions to both the
gauge kinetic function and the D term in combination with
the nonperturbative superpotential.
In the de Sitter vacua constructed this way supersym-

metry is broken by a D term since, as discussed above,
D > 0 in the physical region of the moduli space.
Vanishing F terms, i.e., DSW ¼ DTW ¼ 0, would imply
D∂ZW ¼ 0, which is not possible for D > 0 and a KKLT-
type superpotential. Hence, as expected, supersymmetry is
also broken by F terms and the Goldstino is a mixture of
the gaugino and modulini, withm3=2 ∼ hFi ∼ hDi. It is well
known that no-scale models require carefully chosen
superpotentials in order to allow for metastable de Sitter
vacua [16,17]. In the above analysis simple solutions are
found due to the gauged shift symmetry, a possibility which
has already been discussed in Ref. [18].
An example.—In Ref. [26] we derive the low-energy

effective action for a six-dimensional supergravity model
with a U(1) gauge field and a charged bulk matter field,
compactified on an orbifold T2=Z2 with magnetic flux. The
antisymmetric tensor field couples to the U(1) gauge field
via a Chern-Simons term. The four-dimensional effective
action involves the Kähler potential Eq. (1) with a gauged
shift symmetry in S and T. The Killing vectors are given by

XT ¼ −i
f
l2

; XS ¼ −ig2
N þ 1

ð2πÞ2 ; ð15Þ

where f is the quantized flux, f ¼ −4πN < 0, N ∈ N, and
l is a length scale in Planck units. XS is a consequence of
the Green-Schwarz term which is needed to cancel bulk and
fixed point anomalies. It represents a quantum correction
which, to our knowledge, has been neglected in previous
analyses of moduli stabilization. Note that the two Killing
vectors contribute to the D term with opposite signs:
−iXT > 0, −iXS < 0.
The orbifold compactification with N flux quanta gen-

erates N þ 1 massless Weyl fermions, as discussed in
Ref. [25]. Their scalar superpartners ϕi obtain masses
from the D-term potential

VD ¼ g2

2h

�XNþ1

i¼1

jϕij2 þD

�2

; ð16Þ

with D given by Eq. (7). The stabilization of the charged
matter fields ϕi at the origin requires D > 0, as assumed in
the previous section. Note that all matter fields ϕi have the
same U(1) charge since they originate from the same bulk
field. The size of D determines the mass splitting within
matter multiplets and therefore the scale of supersymmetry
breaking [32]. Furthermore, we want to point out that
the quantity E introduced above is always positive,
E ¼ iXS=s − iXT=t > 0, and ρ ¼ D=E ∈ ð0; 1Þ.
As discussed in the previous section, the existence of de

Sitter minima crucially depends on the gauge kinetic
function for which one obtains [26]

hS ¼ 2; hT ¼ −
2g2l2

ð2πÞ3 : ð17Þ

At the classical level, the gauge kinetic function only
depends on S. The contribution proportional to T is a direct
consequence of the Green-Schwarz term, and it is remark-
able that the sign of hT is indeed negative. Note that for XT,
XS, hS, and hT as given in Eqs. (15) and (17), h > 0 always
implies D > 0 for N ≥ 1. Hence, for nonzero flux, the
matter fields are always stabilized at the origin.
In the expression Eq. (11) for the scalar potential only the

term −EB can become negative. For the 6D model consid-
ered here one has z > 0 see Eqs. (3), (15). Hence, B is
bounded frombelow and fromabove, and−EB can approach
−∞ only for s; t → 0 see Eq. (10). However, in this limit the
positive third term in Eq. (11) is more singular. The scalar
potential is therefore bounded from below.
We are now ready to apply the general analysis of the

previous section to our example. For simplicity, we set
ϵ ¼ 0 in Eqs. (14) and look for Minkowski vacua.
Obviously, there exist very similar solutions for de Sitter
vacua with ϵ≳ 0. Having extra dimensions at the scale of a
grand unified theory (GUT) scale extra dimensions and
three generations in mind [33], we choose l ¼ 50, g ¼ 0.2,
and N ¼ 3. Using Eqs. (14) and writing az≡ aSðsþ κtÞ,
we find for a Minkowski minimum at ðs; tÞ≃ ð5.3; 9.4Þ
typical superpotential parameters,
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aS ≃ 0.63; W0 ≃ −9.1 × 10−4; W1 ≃ 6.9 × 10−4:

ð18Þ

For the effective gauge coupling we obtain geff ¼
gh−1=2 ≃ 0.16, and the size of the compact dimension is
V2 ¼ l2

ffiffiffiffi
st

p
=ð2g2Þ ¼ ð7 × 1015 GeVÞ−2, implying GUT

scale supersymmetry breaking. Note that also larger extra
dimensions can be obtained without fine-tuning for larger
values of h, i.e., for smaller gauge couplings and smaller
superpotential parameters W0, W1. The masses of all
moduli are of order 1014 GeV. In Fig. 1 the scalar potential
is shown close to the Minkowski minimum. It diverges as s
and t approach the critical line h ¼ 0.
Discussion.—We have presented a new class of meta-

stable de Sitter vacua. They arise in no-scale supergravity
models with a gauged shift symmetry involving two moduli
fields, S and T. This leads to two Fayet-Iliopoulos terms
with different moduli dependence. Also the gauge kinetic
function has contributions linear in S and T. The super-
potential of KKLT-type depends on the gauge invariant
linear combination of S and T. As we have shown, de Sitter
or Minkowski vacua are naturally obtained if the
T-dependent contribution to the gauge kinetic function is
negative.
It is remarkable that the low-energy effective action of

six-dimensional supergravity with flux, compactified on an
orbifold, fulfills the sufficient conditions for de Sitter
vacua. The T-dependent FI term is generated by magnetic
flux, whereas the S-dependent FI term and the T-dependent
contribution to the gauge kinetic function are due to the

Green-Schwarz term needed to cancel the U(1) gauge
anomaly. The Green Schwarz-term leads to the negative
sign of the T-dependent part in the gauge kinetic function.
Flux and anomaly cancellation by the Green-Schwarz

mechanism are generic ingredients of string compactifica-
tions. We therefore believe that our discussion of de Sitter
vacua is relevant far beyond the six-dimensional super-
gravity example discussed in this Letter. It will be interest-
ing to study applications for the heterotic string as well as
for type IIB string theory and F-theory. Furthermore, it is
intriguing that typical values for the superpotential param-
eters and the gauge coupling lead to GUT scale extra
dimensions and a related large supersymmetry breaking
scale. This is a challenge for the electroweak hierarchy
problem, analogous to the cosmological constant problem
which is encoded in the fine-tuning of the superpotential
parameters.
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