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We present results from the first fully relativistic simulations of the critical collapse of rotating radiation
fluids.We observe critical scaling both in subcritical evolutions—in which case the fluid disperses to infinity
and leaves behind flat space—and in supercritical evolutions, which lead to the formation of black holes.We
measure the mass and angular momentum of these black holes, and find that both show critical scaling with
critical exponents that are consistent with perturbative results. The critical exponents are universal: they are
not affected by angular momentum, and are independent of the direction in which the critical curve, which
separates subcritical from supercritical evolutions in our two-dimensional parameter space, is crossed. In
particular, these findings suggest that the angular momentum decreases more rapidly than the square of the
mass, so that, as criticality is approached, the collapse leads to the formation of a nonspinning black hole.We
also demonstrate excellent agreement of our numerical data with new closed-form extensions of power-law
scalings that describe the mass and angular momentum of rotating black holes formed close to criticality.
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Critical phenomena in gravitational collapse, first
reported in the seminal work of Choptuik [1], refer to
properties of solutions to Einstein’s equations close to the
threshold of black-hole formation (see [2,3] for reviews).
Consider a family of initial data, for a given matter model,
parameterized by a parameter p. Supercritical data will
evolve to form a black hole, while subcritical data will not.
The onset of black-hole formation occurs at some critical
value of the parameter, say p�. The mass of black holes
formed by supercritical data then scales with

M ≃ CMjp − p�jγM ; ð1Þ
where the critical exponent γM depends on the matter
model, but not on the specifics of the initial data or their
parametrization (depending on the choice of the parameter-
ization, supercritical solutions may correspond to p > p�
or p < p�). For subcritical data, for which the fluid
disperses to infinity and leaves behind flat space, the
maximum value of the spacetime curvature attained during
the evolution also follows critical scaling (see [4]). For
perfect fluids, for example, Einstein’s equations relate this
maximum curvature to the maximum value of the density ρ
encountered during the evolution, leading to a scaling

ρmax ≃ Cρjp − p�j−2γρ ð2Þ

for subcritical data. On dimensional grounds, we must have
γρ ¼ γM. Moreover, in the strong-field region prior to
black-hole formation, the solution approaches a self-similar
critical solution which also depends on the matter model
but not the initial data.
Choptuik’s discovery of these critical phenomena

launched an entire new field of research. Soon after his

announcement, which was based on simulations of mass-
less scalar fields, similar phenomena were reported in the
collapse of vacuum gravitational waves [5] and radiation
fluids [6], followed by numerous other numerical, analyti-
cal, and perturbative studies for different matter models,
asymptotics, and number of spacetime dimensions (we
again refer to [2,3] for reviews). In particular, these studies
revealed that for some matter models, including scalar
fields, the self-similarity of the critical solution is discrete,
while for others, including perfect fluids, it is continuous.
For many models the critical exponent γM can also be found
semianalytically in perturbation theory (e.g., [7,8]).
The vast majority of these studies, however, was per-

formed under the assumption of spherical symmetry. In
particular, despite the tremendous recent progress in
numerical relativity, only few numerical simulations of
aspherical critical collapse have been performed (e.g.,
[5,9–14]). This is even more surprising as several interest-
ing questions cannot be addressed in spherical symmetry.
One such question concerns the angular momentum in the
collapse of rotating matter. To date, the only fully nonlinear
and relativistic study of the role of angular momentum in
critical collapse was performed by Choptuik et al. [10],
who considered a complex scalar field and constructed
initial data carrying angular momentum in such a way that
the resulting stress-energy tensor was axisymmetric. This
approach leads to an aspherical density distribution, so that
it did not allow for an exploration of the angular momen-
tum’s role in perturbing spherical critical collapse.
Gundlach [15] (see also [16]) considered nonspherical

perturbations of the critical solution for perfect fluids,
whose pressure P is related to the density ρ by an equation
of state P ¼ κρ. These studies showed that, close to the
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onset of black-hole formation, the angular momentum
scales with

J ≃ CJjp − p�jγJ ; ð3Þ

where the critical exponent γJ is related to γM by

γJ ¼
5ð1þ 3κÞ
3ð1þ κÞ γM ð4Þ

for 1=9 < κ ≲ 0.49 [see Eq. (23) in [15]]. For a radiation
fluid with κ ¼ 1=3 we obtain γJ ¼ 2.5γM, or γJ ≃ 0.8895
for the analytical value γM ≃ 0.3558 [7,8]. Combining the
scaling relations (1) and (3) we also have

J ∝ MγJ=γM : ð5Þ

This shows that the angular momentum should decrease
more rapidly than the square of the mass as criticality is
approached, so that, in this limit, the forming black hole
should be nonspinning. This behavior is similar to the
observation that charge does not affect the critical solution
in the critical collapse of charged scalar fields [17,18].
In this Letter we report on what we believe are the first

fully relativistic simulations of the gravitational collapse of
rotating radiation fluids (but see [19] for a study in
Newtonian gravity). We confirm the above relations for
the critical exponents, to within the accuracy of our
simulations, and demonstrate excellent agreement with
new closed-form extensions of power-law scalings that
describe the mass and angular momentum of rotating black
holes formed close to criticality [20].
We consider a radiation fluid with P ¼ ρ=3, i.e.,

κ ¼ 1=3, and generalize the initial data adopted in [6]
by allowing the fluid to carry angular momentum [see
Eqs. (6) and (7) below]. We then evolve these data with
the Baumgarte-Shapiro-Shibata-Nakamura formulation
[21–23], which adopts both a 3þ 1 decomposition as well
as a conformal rescaling γij ¼ ψ4γ̄ij of the spatial metric
γab ≡ gab þ nanb. Here gab is the spacetime metric, na the
normal vector on spatial slices, ψ the conformal factor, and
γ̄ij the conformally related metric. The extrinsic curvature
Kij is related to the time derivative of the spatial metric. We
solve the resulting equations in spherical polar coordinates
[24–26], imposing 1þ log slicing and a Gamma-driver
condition. The code makes no symmetry assumptions, but
we run it here assuming both axisymmetry and a symmetry
across the equatorial plane. In [14] we used this code to
study critical phenomena in the aspherical collapse of a
radiation fluid; those calculations also serve as a calibration
of our code for the calculations presented here. We use a
logarithmic grid in the radial direction (see Appendix A in
[14]), and also allow for a radial regridding to zoom in
on the critical solution. In most simulations our
radial resolution at the origin is Δr≃ 5 × 10−3 initially,

but Δr≃ 5 × 10−4 at late times. As in [14], we have found
it sufficient to use only Nθ ¼ 12 angular grid points to
resolve one hemisphere.
Following [6] we choose maximally sliced (i.e.,

K ≡ γijKij ¼ 0) and conformally flat (i.e., γ̄ij ¼ ηij) initial
data with an initial density distribution

ρn ≡ nanbTab ¼ η

2π3=2R2
0

exp ½−ðψ2r=R0Þ2�; ð6Þ

where Tab is the stress-energy tensor. Here ρn is the density
as observed by a normal observer; the density as observed
by an observer comoving with the fluid is ρ≡ uaubTab,
where ua is the fluid’s four-velocity. For spherically
symmetric data we may interpret R≡ ψ2r as the areal
radius. In [14] we considered aspherical deformations of
this density distribution; here we instead consider rotating
fluids with an initial momentum density

Sφ ≡ −γφjniTij ¼
4

3
ρn

Ω
1þ ðψ2r=R0Þ2

ð7Þ

and Sr ¼ Sθ ¼ 0. Given Sφ we solve the momentum
constraints for a vector potential Wφ from which the
trace-free part of the extrinsic curvature Aij can be
computed (see, e.g., Box 3.1 in [27]). Solving the
Hamiltonian constraint then yields the conformal factor
ψ . We solve the coupled set of equations iteratively,
updating the sources (6) and (7) between iterations, until
the solution has converged to a desired accuracy. For a
radiation fluid, the above fluid variables are identical to the
corresponding conserved fluid variables used in our hydro-
dynamical scheme, from which the primitive fluid variables
ρ, P, and vφ can then be recovered. ForΩ ¼ 0 we also have
ρ ¼ ρn initially, so that the above data reduce to the initial
data of [6] in that limit. To complete the initial data we
choose a “precollapsed” lapse α ¼ ψ−2 and zero shift at the
initial time.
In (6) and (7), η parametrizes the overall amplitude of the

density, and Ω the rotation rate. A third parameter, R0,
determines the length scale of the problem. We fix our code
units by setting R0 ¼ 1; all dimensional quantities are,
hence, expressed in units of R0.
In the following we explore several different sequences

through our two-dimensional parameter space, as indicated
by the dashed green lines in Fig. 1. Six of these sequences
(labeled A–F) are for rotating configurations; a seventh
(labeled N) is the nonrotating limit [6] (also [14]).
We first explore the threshold of black-hole formation by

exploring sequences A–F in the vicinity of criticality. For
each sequence we vary the parameter that is not being
held constant to bracket the critical value of this parameter
(the red dots in Fig. 1). We summarize the parameters and
results for these sequences in Table I. As one might
expect, rotation provides centrifugal support to the fluid
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approximately proportional to the square of the rotation
rate, so that with Ω ≠ 0 a black hole forms only for larger
values of η than with Ω ¼ 0. This is borne out by the blue
line in Fig. 1, which represents the leading-order fit

η�ðΩ�Þ ¼ η�0 þ 0.36Ω2� ð8Þ

through the critical points ðη�;Ω�Þ and marks the critical
curve that separates the supercritical from subcritical parts
of our parameter space. Here η�0 ≃ 1.0184 denotes the
critical value for zero rotation.
For supercritical data, which correspond to η > η� for

sequences of constant Ω, but to Ω < Ω� for sequences of
constant η, we find an apparent horizon [28] and measure
its irreducible mass Mirr and angular momentum J (see
[29]) once their values have settled down to approximately
constant values. (Angular momentum that does not end up
in a black hole is carried away by the dispersing fluid).

Assuming that the new black hole is a Kerr black hole we
then compute the Kerr massM ¼ Mirr½1þ ðJ=M2

irrÞ2=4�1=2.
Fitting our numerical data for the mass M and angular
momentum J to the scaling relations (1) and (3) then yields
the critical exponents γM, γJ. For subcritical data we fit the
maximum encountered densities ρmax to the scaling relation
(2) to find γρ. We show examples of these scalings for
sequences D and F in Fig. 2, and we list all our results in
Table I.
As we discussed in more detail in [14], our results for γM,

γJ, and γρ depend somewhat on which numerical data are
included in the fit. Close to criticality, where the evolution
develops increasingly small features, the numerical solu-
tion becomes increasingly affected by numerical error. We
have confirmed that we can extend our results closer to
criticality by using a higher grid resolution. Too far from
criticality, on the other hand, the results show deviations
from the scaling relations (1), (2), and (3), which hold only
in the immediate vicinity of criticality. Accordingly, we
estimate our results for the critical exponents to be accurate
to within only a few percent.
Within these error bars, our results for the critical

exponents γρ, γM, and γJ do not appear to be affected
by the angular momentum of the initial data, which is
consistent with the expectations from perturbative treat-
ments [15,20] as well as the numerical findings of [10].
Moreover, our findings for γM and γρ are consistent with the
analytical value of γM ¼ γρ ≃ 0.3558 [7,8], while our
results for γJ are close to the analytical value of γJ ≃
0.8895 [15]. We also note that we obtain consistent values
for these exponents independently of whether we vary η or
Ω, i.e., independently of the “direction” in which the
critical curve in Fig. 1 is crossed (see also [20]).
In Fig. 3 we graph the angular momentum J versus the

mass M of black holes formed in supercritical sequences.
As expected from (5) we find a power-law relation between
these two quantities, with the exponent given by γJ=γM.
Our numerical values for this ratio, listed in the last column
in Table I, are close to the analytical value γJ=γM ¼ 2.5 for
a radiation fluid according to the perturbative treatment
of [15] [see Eq. (4) above].

TABLE I. Summary of parameters and results for six different rotating sequences A through F. For each sequence we list which
parameter we fix, the critical value of the parameter that is being varied, the ADM mass Mtot and angular momentum Jtot of the critical
initial data, as well as results for the critical exponent γρ for subcritical data and γM and γJ for supercritical data. We also include results
for the nonrotating limit, marked N, which have been obtained with a different numerical grid setup (see [14]).

Fixed parameter Critical value Mtot Jtot γρ γM γJ γJ=γM

N Ω ¼ 0.0 η� ≃ 1.0184 0.509 0.0 0.357 0.363
A Ω ¼ 0.05 η� ≃ 1.0192 0.510 0.016 0.364 0.358 0.870 2.43
B η ¼ 1.02 Ω� ≃ 0.06804 0.511 0.022 0.356 0.360 0.870 2.42
C Ω ¼ 0.1 η� ≃ 1.0220 0.512 0.032 0.357 0.360 0.873 2.43
D η ¼ 1.035 Ω� ≃ 0.2147 0.520 0.070 0.357 0.360 0.872 2.42
E η ¼ 1.0505 Ω� ≃ 0.2997 0.5296 0.100 0.359 0.364 0.876 2.41
F Ω ¼ 0.3 η� ≃ 1.0506 0.5296 0.100 0.360 0.362 0.888 2.45

N A

B

C

D

E

F

supercritical

subcritical

FIG. 1. A sketch of our numerical sequences (see also Table I
for parameters and results). The green dashed lines show our
sequences, with the red dots marking the critical points. The blue
line is the fit (8) through these points and represents the critical
curve that separates supercritical from subcritical configurations.
Supercritical data have η > η� for sequences of constant Ω, but
Ω < Ω� for sequences of constant η.
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We now explore the supercritical “horizontal” sequences
B, D, and E in Fig. 1 between Ω ¼ 0 and Ω�. As shown in
[20], the simple power laws (1) and (3) can be extended to
provide closed-form expressions for the mass and angular
momentum of rotating black holes formed not only close to
criticality, as predicted in [15,16], but in the entire
supercritical region shown in Fig. 1. Normalizing with
respect to the maximaMmaxðηÞ and JmaxðηÞ of the mass and
angular momentum for a given value of η [with
MmaxðηÞ ¼ Mðη; 0Þ], we have

Mðη;ΩÞ
MmaxðηÞ

≃ ð1 − x2ÞγM ð9Þ

and

Jðη;ΩÞ
JmaxðηÞ

≃ xð1 − x2ÞγJ
C

: ð10Þ

Here we have defined x≡Ω=Ω�ðηÞ [where Ω�ðηÞ can be
found by inverting (8)], and C≃ 0.4025 is the maximum of
the function xð1 − x2ÞγJ on the interval [0, 1]. Close to the
critical curve, i.e., in the limit x → �1, Eqs. (9) and (10)
reduce to (1) and (3).
In Fig. 4 we compare our numerical results with the

expressions (9) and (10). Even though the masses and
angular momenta themselves take vastly different values
along the different sequences (see the insets in Fig. 4), they
agree remarkably well when rescaled as suggested by (9)
and (10), especially for the sequences closer to η�0.
The maximum value of J=M2 achieved on a line of

constant η scales with ðη − η�0ÞγM=2 [20]. In the parameter
region of Fig. 1, the largest values of J=M2 are about 0.29.
We therefore expect deviations from power-law scalings for
larger values of η in order to avoid violations of the
constraint J=M2 < 1. We plan to explore this regime in
future work.
To summarize, we report on what we believe are the first

fully relativistic simulations of the gravitational collapse of
rotating radiation fluids. We consider different sequences in
our two-dimensional parameter space, and locate the
critical curve separating supercritical from subcritical data.
We observe critical scaling of the black hole mass and
angular momentum for supercritical data, and of the

Seq. D

Seq. F

FIG. 2. Scalings for sequencesD and F. The upper panel shows
results for the maximum density ρmax encountered in subcritical
evolutions, while the lower two panels show results for the mass
M and angular momentum J of black holes formed in super-
critical evolutions. The crosses and dots denote our numerical
results; the lines represent fits of the scaling laws (1), (3), and (2)
based on the parameters listed in Table I. The parameter p
corresponds to Ω in sequence D, but to η in sequence F.

Seq. A

Seq. B

Seq. C

Seq. D

Seq. F

FIG. 3. Graphs of the angular momentum J versus the mass M
of black holes formed in our supercritical evolutions. The dots
denote numerical results, while the solid lines are fits based on the
parameters listed in Table I. The slope of these lines is given by
γJ=γM (last column in Table I), which are close to the analytical
value of 2.5 for a radiation fluid.

Seq.

Seq.

Seq.

FIG. 4. Black hole masses M and angular momenta J as a
function of η and Ω for sequences B, D, and E. The dots denote
numerical results, while the solid lines are the analytical power-
law scalings (9) and (10). The insets show the raw data forM and
J as a function of Ω, rather than the rescaled data as in the main
graphs.
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maximum encountered density for subcritical data. The
critical exponents are in good agreement with the pertur-
bative results of [15], are not affected by angular momen-
tum, and are also universal in the sense that they do not
depend on the direction in which the critical curve is
crossed. Our findings confirm that the angular momentum
decreases more rapidly than the square of the black hole’s
mass as criticality is approached, so that in this limit the
black hole is nonspinning. We also demonstrate that, for
supercritical data, the black hole masses and angular
momenta satisfy new closed-form power-law scalings
[20]. Our findings therefore confirm several results on
the role played by angular momentum in the critical
gravitational collapse of radiation fluids, that to date had
only been predicted from perturbative calculations. We
expect that our results do not depend on the specific choice
of initial data, but that remains to be verified in future
studies.
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