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We report the results of new differential force measurements between a test mass and rotating source
masses of gold and silicon to search for forces beyond Newtonian gravity at short separations. The
technique employed subtracts the otherwise dominant Casimir force at the outset and, when combined with
a lock-in amplification technique, leads to a significant improvement (up to a factor of 103) over existing
limits on the strength (relative to gravity) of a putative force in the 40–8000 nm interaction range.
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Although the gravitational attraction between two point
masses was the first force to be described, it remains, in
comparison with other fundamental forces, poorly charac-
terized. Unification theories, such as string theory, which
introduce n compact extra spatial dimensions, predict
deviations from Newtonian gravity over submillimeter
scales [1,2]. Also, many extensions to the standard model
predict the existence of new light bosons, the exchange of
which would lead to new forces. In both cases, the
existence of compact extra dimensions and the exchange
of new light bosons, the non-Newtonian interaction
between two point masses m1 and m2 separated by a
distance r can be parametrized as

VðrÞ ¼ −G
m1m2

r
αe−r=λ; ð1Þ

where G is the Newtonian gravitational constant, α is the
strength of the Yukawa-like correction arising from new
physics, and λ is its characteristic range. In the case of
compact extra dimensions, λ closely corresponds to the size
of the extra dimension. For the exchange of a boson of mass
m, λ ¼ ℏ=mc [3].
Motivated in part by these considerations a large number

of experiments have been conducted to constrain the value
of α (see, for example, the reviews [4,5]). While they have
been successful in constraining jαj < 1 for λ > 50 μm [6],
the limits on α are much less restrictive for λ < 10 μm.
Constraints on α for small values of λ are much more
difficult to achieve due to the small effective masses (i.e.,
mass within a distance r ∼ λ of the surface) interacting
through the Yukawa-like contribution. Compounding the
problem at submicron separations, the effects of vacuum
fluctuations eventually become dominant after electrostatic
contributions have been minimized. Hence, many of the
limits in the λ ∈ ½10; 10000� nm range have been obtained
by subtracting from the measured interaction the calculated

contribution from the Casimir force [7–10] which arises
from vacuum fluctuations. While useful, this approach has
two main drawbacks. (i) The subtracted background is
relatively large, and hence small corrections to the back-
ground result in large changes in the derived limits. (ii) It is
not clear what the appropriate background to subtract is.
While some groups use a plasma model for the extrapo-
lation to zero frequency of the dielectric function of the
metal, others use a Drude model [11]. The correct approach
remains a matter of controversy, and new experiments have
been proposed to help resolve this problem [12].
In the absence of electromagnetic contributions, a

comparison of the forces exerted on a test mass by materials
of different densities leads to constraints on α and λ in
Eq. (1). Different materials differ not only in their densities
but also in their response to vacuum fluctuations, and hence
these effects must be suppressed when searching for the
presence of putative new forces at submicron separations.
The “isoelectronic” or “Casimir-less” technique introduced
in Ref. [13] capitalizes on the fact that the response of a
sample to vacuum fluctuations is mainly a surface effect,
whereas any new force interacts with a portion within range
∼λ of its surface. In the Casimir-less technique, contribu-
tions from vacuum fluctuations are suppressed by coating
the source mass with a layer of Au having a thickness larger
than the plasma wavelength of Au, λp ¼ 135 nm, such that
the difference in the Casimir interaction between the
underlying structure in the source mass with the test mass
is attenuated by a factor larger than 106 [13,14]. The Au
layer thus serves not only to reduce conventional electro-
static effects as in other experiments but, more significantly,
to suppress vacuum fluctuation contributions associated
with the composition of the test mass.
While earlier experiments successfully demonstrated the

possibility of subtracting the Casimir background, the
performance of the technique was limited by two
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experimental constrains. (i) To observe a signal at the
resonance frequency ωr of the mechanical oscillator (with-
out anything moving at ωr) a heterodyne technique was
used. The test mass was harmonically positioned over the
two sides of the source mass at ω1, while the separation
between the test and source masses was harmonically
varied with amplitude δz at ω2 ¼ ωr − ω1, effectively
reducing the hypothetical Yukawa-like signal by
δz=λ ∼ 0.02. (ii) The sample was made in such a way that
the thicknesses of the two sides of the source mass were
unintentionally different. This translated into a ∼3 fN
systematic signal identified with the distance dependence
of the Casimir force. This residual signal yielded the limits
obtained in Ref. [13].
In this Letter we report on a new approach to improving

the limits in the fλ; αg phase space. The use of a rotating
source mass allowed us to fully utilize the high force
sensitivity provided by the large mechanical quality of the
microelectromechanical torsional oscillator (MTO) [15].
Furthermore, an implementation of the source mass where
there is no correlation between its thickness and its angular
position yielded an unprecedented level of subtraction of
the background arising from vacuum fluctuations.
A schematic of the experimental setup is shown in Fig. 1.

The test mass (a R ¼ 149.3� 0.2 μm sapphire sphere
covered with a tCr ∼ 10 nm layer of Cr and a tAu ∼
250 nm Au film) was glued close to the edge (at a distance
b ¼ 235� 4 μm from the axis of rotation) of the 500 μm×
500 μm plate of the oscillator. Gluing the sphere reduced
the MTO’s natural frequency of oscillation from f0 ¼
708.23� 0.05 Hz to fr ¼ 307.34� 0.05 Hz, and it

reduced the oscillator’s quality factor from Q ∼ 9000 to
Q≃ 7200 for a pressure P ≤ 10−5 torr. The experiments
were performed at P≃ 10−5 torr and the motion of the
plate was detected by the change in capacitance between
the plate and the underlying electrodes as in
Refs. [13,16,17]. Calibration of the MTO was performed
by using the electrostatic interaction between the Au-coated
test and source masses [16]. The calibration was performed
with the source mass stationary, and the distance was
monitored and measured using a two-color interferometer
(with a sensitivity of 0.2 nm). After performing the
calibration, the potential difference between the sphere
and the plate was adjusted to minimize the electrostatic
interaction. With this MTO, a thermally limited minimum
detectable force FminðfrÞ ∼ 6 fN=

ffiffiffiffiffiffi

Hz
p

was calculated
when working at resonance at 300 K [18]. Since fr is a
function of separation due to the nonlinear nature of the
Casimir interaction, it was continuously monitored.
A five axis stepper-motor-driven positioner and a three

axis piezoelectrically driven system were used to bring the
test mass in close proximity (z ∈ ½200; 1000� nm) to the
source mass. The source mass was fabricated by depositing
a dCr ¼ 10 nm thick layer of Cr on a 1 in. diameter 100 μm
thick [100] oriented Si wafer. A dTM ¼ 2.10� 0.02 μm
thick layer of Si was deposited on top of the Cr-covered Si
wafer. Using conventional photolithography, a photoresist
structure consisting of concentric sectors was defined in the
Si. The Si not covered by the photoresist was removed
down to the Cr layer using CF4 reactive ion etching. After
removing the photoresist, Au was thermally evaporated and
the structure mechanically polished to expose the Si
sectors. This process defined a structure with a surface
consisting of a center circle of Au with a radius
R1 ¼ 4 mm, then a 200 μm wide ring with 50 sectors of
Au-Si, and a 150 μm wide Au ring. The sequence of
200 μm wide rings with Au-Si sectors and 150 μm wide
Au rings was repeated, with the number of Au-Si sectors
increasing by 25 for each concentric ring until the last one,
with 300 sectors, which was located at R11 ¼ 7.5 mm. This
structure was glued with NOA61 UV curing cement to a
BK7 Schott glass flat with the original Si wafer exposed.
The wafer was etched away using KOH, and then a dAu ¼
150� 3 nm layer of Au was deposited by thermal evapo-
ration. The exposed Au surface was characterized by white
light interferometry and atomic force microscopy (AFM),
which showed an optical quality film with no memory of
the underlying structure. The 1024 × 1024 AFM images
obtained over different 10 μm× 10 μm regions yielded
position-independent 60 nm peak-to-peak topographic
roughness. Excluding a few isolated spikes ∼50 nm tall
and about 100 nm across, the sample has a rms roughness
of 1.5 nm. The disk was then mounted on an air bearing
spindle. It was optically verified that the center of the disk
and the axis of rotation of the spindle coincided to better
thanΔr ∼ 10 μm. The flatness and alignment of the sample

FIG. 1. Schematic of the experimental setup (not drawn to
scale). The Au-coated sphere is glued to the oscillator. Three
regions with n ¼ 5, 8, 11 Au-Si sectors are shown. The actual
sample has n ¼ 50; 75;…; 300. The fx; yg plane defines the
plane of rotation of the spindle. cl is the line where all of the
different regions with Au-Si sectors coincide. θ is the instanta-
neous axis of rotation, ϕ ¼ ωt is the angle of rotation. The
distance z is measured from the vertex of the spherical test mass
to the source mass. r is the distance from the vertex of the test
mass to the center of the source mass, o. For clarity, displace-
ments Δr between o and the axis of rotation are not shown. For
comparison, a schematic of the setup used in Ref. [13] is shown.
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were checked in situ using a fiber interferometer (with a
response time of 10 ms). It was found that the surface of
the sample was perpendicular to the axis of rotation to
better than z0 ¼ 20 nm at R11 when rotating the disk
at ω ¼ 2π rad=s.
The air bearing spindle worked under a constant air flow

of several liters per minute. The top of the source mass was
at a distance D ¼ 4 cm from the air exhaust. To prevent air
leaks into the chamber, the spindle was mounted with a
circular skirt which rotated with the spindle. The seal
between the skirt and the vacuum chamber was provided by
high molecular weight oil. Oil contamination inside the
chamber was precluded using chilled water refrigeration
(T ¼ 10 °C) on a system of baffles and traps.
With the sphere placed at Ri þ 100 μm (with n Au-Si

sectors), the air bearing spindle was rotated at
ωr ¼ 2πfr=n. In this manner, a force arising from the
potential given in Eq. (1) would have manifested itself at
fr, even though there were no parts moving at fr. The
Newtonian gravitational attraction between the sphere and
the structured sample yields a force FN ∼ 10−20 N, unde-
tectable by our system. Hence, an integration of Eq. (1)
over the geometry of the sample is necessary. Disregarding
finite size effects across the width of the ring [17], the
expected difference when the sphere is over a Au or Si
sector is [13,19]

ΔFhðzÞ ¼ −4π2Gαλ3e−z=λRKtKs;

Kt ¼ ½ρAu − ðρAu − ρCrÞe−tAu=λ
−ðρCr − ρSÞe−ðtAuþtCrÞ=λ�;

Ks ¼ ½ðρAu − ρSiÞe−ðdAuþdCrÞ=λð1 − e−dTM=λÞ�; ð2Þ

where Kt ðKsÞ is a term associated only with the layered
structure of the test (source) mass, ρS, ρCr, ρAu, and ρSi are
the sapphire, Cr, Au, and Si densities, respectively.
The setup is optimized to select the first harmonic of the

force associated with the angular distribution of the sample.
Other harmonics and all forces with different angular
dependences are outside of the resonance peak of the
MTO and consequently are “filtered” by the sharp Δf ≃
40 mHz resonance peak of the oscillator.
Results obtained by doing the experiment over the n ¼

300 ring are shown in Fig. 2. These results were obtained by
using a lock-in detection technique at fr. A mark on the
outside of the source mass coincident with the cl line in
Fig. 1 was used to define the origin of the phase. Many
features are worth noting. (i) Increasing the integration time
τ decreases the random noise of the measured force, as
expected. (ii) At separations z ≤ 300 nm, the statistical
noise is larger than the minimum detectable force. This
happens in a region where the Casimir force is large. At
larger separations, the statistical noise is close to the
minimum detectable force. It was also observed that this
noise was independent of the angular frequency of the

disk (for ω=2π ∈ ½0.2; 20� Hz). (iii) There is a separation-
dependent net force measured which is practically indepen-
dent of the radial position of the sphere over the rotating disk.
This signal increases proportionally to ω as the disk is
rotated at higher subharmonics of ωr ¼ 2πfr.
Point (iii) indicates an incomplete subtraction of back-

ground forces.Kelvin probe forcemicroscopywas performed
in the sample over different 5 × 5 μm2 regions. This con-
tribution is not of electrostatic origin. It was observed that the
main potential islands had a characteristic size l ∼ 200 nm,
withVrms < 5 mV.Since the experimental system provides a
sharp filtering of the signal at ωr, this implies that the
electrostatic contribution to the signal at ωr would be
undetectable, ΔFelðzÞ ≤ 10−17 N [20]. Furthermore, if
detected, the electrostatic signal would have a radial depend-
ence when the disk is rotated at constant frequency [20],
which was not observed.
Variations in the separation between test and source

masses could yield the observed background through the
separation dependence of the Casimir force FCðzÞ ∝ z−α

[11]. FCð200 nmÞ ¼ 34 pN and α ¼ 2.78were experimen-
tally determined in the actual configuration. The observed
signal at ωr ¼ nω must appear through zðtÞ.
The observed signals are consistent with the axis of

rotation of the spindle having both an impulselike Δθ1

(d)(c)

(b)(a)

FIG. 2. (a) Lock-in amplified detection of the signal with an
integration time τ ¼ 1 s at a separation z ¼ 200 nm. (b) Same as
in (a) for τ ¼ 3000 s. (c) Standard deviation for 15 different
realizations of the experiment, with τ ¼ 3000 s as a function of
separation. The horizontal dashed line is the statistical noise in the
amplitude of the oscillator at T ¼ 293 K (which was also
measured over τ ¼ 12000 s at z ¼ 3 μm). (d) Measured inter-
action as a function of separation. The two data sets were
obtained on top of the region with n ¼ 300 (filled circle) and
over a section of the sample without Si at a radius r ¼ 8 mm
(square). The error bars represent the standard deviation for ten
repetitions with τ ¼ 3000 s.
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once-per-revolution and a random wobbling. The impulse-
like wobble has been identified by analyzing its frequency
dependence. Varying the frequency of the spindle, the
harmonic components of the signal observed at ωr are
consistent with a once-per-revolution impulselike signal.
The random wobbling is observed to have white-noise
characteristics, hθ2ðτÞθ2ð0Þi ¼ Θ2δðτÞ, where Θ is a con-
stant, in the range of frequencies investigated, between 0.1
and 20 Hz. This random noise increases the minimum
detectable force from ∼6 to ∼12 fN=

ffiffiffiffiffiffi

Hz
p

at z ¼ 200 nm.
Associated with any Δθ, there is a change in separation
δz ∼Dδθ between the sphere and the rotating sample,
which induces a change in the Casimir force. Since, in our
experiment, D ∼ 4 cm, it follows that Θ ∼ 5 × 10−10 rad
and Δθ1 ≤ 10−7 rad. Neither of these angular deviations
can currently be measured directly.
The lack of parallelism between the normal to the disk and

the rotational axis leads to the time-varying separation
zðtÞ ¼ zs þ z0 cosðωtÞ. Its contribution ΔFpar at ωr enters
through the nonlinear dependence of the Casimir force on
the separation. ATaylor’s expansion of FCðzÞ ∝ z−α shows
that the contribution atωr is attenuated by∼ðz=z0Þn, making
it unobservable for all n’s in our setup. This is also the case
for precession of the spindle. Similarly, the lack of flatness of
the sample generates the angular-position-dependent sepa-
ration zðϕÞ, which was measured using white light inter-
ferometry (see the inset in Fig. 3). Inserting these data into
FCðzÞ yields a contribution ΔFtop < 0.05 fN.
The effect of the once-per-revolution Δθ1 was minimized

in the following way:Δθ1 happens at a characteristic ϕo. As
the disk is positioned for the first time on the spindle, there
is an unknown angle ϕx between the line cl and the line
defined by ϕo. When the sphere is positioned over a region

with only Au in the source mass, a signal with a nonzero
phase is detected (recall that the zero phase is defined at cl).
The sample is then very carefully repositioned over the disk
until the phase of the detected signal is zero. In this
situation, ϕx ¼ 0 is assumed.
An approach where the zero of the phase is redefined

could also be used [21]; however, the method of reposi-
tioning the sample is superior to redefining the zero of the
phase. While it is expected that the signal described by
Eq. (2) is in quadrature (i.e., it should be an odd signal with
respect to ϕ), in principle, it is not known whether the
model is correct. The data shown in Fig. 3 were obtained in
this manner. Furthermore, the same component of the
signal in phase was measured with the sphere placed at
any radii. It was determined that the hypothetical force (in
quadrature) is consistent with zero within the experimental
error for any radii Rn.
The Δr shift between the axis of rotation and the center

of the source mass would also yield a signal at ω if ΔFh
were observable, although it would be attenuated by Ri=Δr
at ωr. Similarly, finite size effects as the Au-Si interface of
the source mass moves under the test mass are negligible at
ωr when compared with the statistical errors.
While the relevant error is ΔFrand, the overall error was

obtained as an addition of the random and systematic errors
ΔF ¼ ΔFrand þ ΔFsyst. The individual systematic errors
described in this Letter were considered to be independent
to obtain ΔFsyst. FðzÞ in Fig. 3 associated with the hypo-
thetical force is consistentwith zero andwas used to establish
new limits in fλ; αg space at the 95% confidence level. The
envelope of the curves where the first harmonic of FhðzÞ is
compared with maxfjFðzÞ þ 2ΔFðzÞj,jFðzÞ − 2ΔFðzÞjg is
shown in Fig. 4. The new limits obtained with the introduced

200 400 600 800 1000

0.0

0.5

1.0

1.5

F
 (

fN
)

z (nm)

0 1 2 3 4 5 6
–10

–5

0

5

10

z 
(n

m
)

FIG. 3. Measured interaction as a function of separation
obtained on top of the region with n ¼ 300. (filled circle)
quadrature signal; (square) in phase signal (see the text). Errors
represent the standard deviation for ten repetitions with
τ ¼ 3000 s. (Inset) The sample’s topography, zðϕÞ over the
R11 circle, obtained by white light interferometry.

FIG. 4. Values in the λ, α phase space excluded by experiments.
The red curve represents the limits obtained in this work.
Previous limits from Riverside [22], IUPUI [9,13], Yale [23],
Stanford [24], Washington [25], and theoretical predictions
[1,2,26–28] are also shown.
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Casimir-less measurement technique represent a significant
improvement over previous experiments: new boundaries
have been established in a spatial range covering more
than 3 orders of magnitude (λ ∈ ½30; 8000� nm), with
improvements as large as 103 in Yukawa-like corrections
to Newtonian gravity at λ ¼ 300 nm.
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