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We derive general relations between the maximum power, maximum efficiency, and minimum
dissipation regimes from linear irreversible thermodynamics. The relations simplify further in the presence
of a particular symmetry of the Onsager matrix, which can be derived from detailed balance. The results are
illustrated on a periodically driven system and a three-terminal device subject to an external magnetic field.
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Introduction.—Thermodynamic machines transform
different forms of energy into one another. For such a
machine, it would be of obvious interest to maximize the
power P and the efficiency η, and to minimize the
dissipation _S [1–37]. The extrema (maximum or minimum)
here are understood with respect to a variation of the
engine’s load parameters, which are often the ones that are
easy to tune. In general, the above goals are incompatible.
For example, the efficiency when operating at maximum
power is (in a time-symmetric setting) limited to half of the
reversible efficiency ηr ¼ 1. The latter efficiency, being an
overall upper bound, can only be reached when operating
reversibly, hence infinitely slowly. Consequently, the cor-
responding power vanishes. More generally, one may
wonder whether there exist specific relationships between
the regimes of maximum power (which will be denoted by
the subscript MP), maximum efficiency (subscript ME),
and minimum dissipation (subscript mD). Recently, such
relations have been discovered between the MP and ME in
the context of two case studies [23,36].
In this Letter, we derive general relations between the

three regimes, within the framework of linear irreversible
thermodynamics. Two results stand out. The first one is a
remarkably simple relation linking the MP to the ME:

ηMP ¼
PMP

2PMP − PME
ηME: ð1Þ

As an implication, note that, since the power output
PME > 0 and efficiency ηMP > 0 are positive, the efficiency
at maximum power is at least half the maximum efficiency,
ηMP ≥ ηME=2. The second result links the regimes of MP
and mD by two equally simple equations:

T _SmD ¼
�

1

ηMP
−

1

η2ME
− 1

�
PMP þ

1

η2ME
PME; ð2Þ

PmD ¼ PMP −
1

η2ME
ðPMP − PMEÞ; ð3Þ

where T is the reference temperature of the system. As a
consequence, note that when the minimum dissipation

coincides with a reversible operation, i.e., _SmD ¼ 0 and
PmD ¼ 0, one finds from Eqs. (2) and (3) that ηMP ¼ 1=2.
The above relations become more specific when the
Onsager matrix, which links the thermodynamic fluxes
and forces, satisfies a generalized Onsager symmetry
condition, which we discuss in more detail below. The
“standard” Onsager symmetry, which applies to time-
symmetric machines, is a particular case. Under this extra
condition, the link between the maximum power and
efficiency, cf. Eq. (1), splits into two separate relations,
in agreement with the special cases discussed in
Refs. [23,36]:

PME

PMP
¼ 1 − η2ME; ηMP ¼ ηME

1þ η2ME
: ð4Þ

To mention some further implications of these results,
reversible efficiency, ηME ¼ 1, can only be reached
when the power goes to zero, PME ¼ 0. Furthermore, 0 ≤
ηME ≤ 1 implies 0 ≤ ηMP ≤ 1=2, as first noted in Ref. [1]
(for a symmetric Onsager matrix). Note also that the
equality sign in PME ≤ PMP is only reached for ηME ¼ 0,
hence ηMP ¼ 0, illustrating the conflict between maximiz-
ing efficiency and maximizing power.
Under the same generalized Onsager symmetry

condition, the links between the maximum power and
minimum dissipation, Eqs. (2) and (3), simplify as follows
[38]:

PmD ¼ 0; T _SmD ¼
�

1

ηMP
− 2

�
PMP: ð5Þ

A zero minimum dissipation (with PMP > 0) implies
ηMP ¼ 1=2, ηME ¼ 1, and PME ¼ 0. Note the close inter-
connection between the results (4) and (5), since all of them
follow from Eqs. (1)–(3), if any one of them is valid.
We close the introduction with an important comment

concerning the mathematical and physical content of the
above relations. We will derive the above results first in the
simple setting of two thermodynamic fluxes and forces,
linked by a 2 × 2 Onsager matrix L. The relations (1)–(3)
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follow from straightforward algebra applied to the standard
expressions from linear irreversible thermodynamics. No
additional assumptions are needed. Equations (4) and (5)
on the other hand require Onsager symmetry or antisym-
metry [39], i.e., L12 ¼ �L21. We next will show that both
sets of results remain valid when the thermodynamic
driving and loading force and flux are vectorial, i.e., they
are composed of subforces and subfluxes, provided one
performs the “full” optimization, i.e., with respect to all the
components of the loading force. The validity of Eqs. (4)
and (5) then rests in addition on a generalized Onsager
symmetry L12 ¼ �LT

21 (T standing for the transpose) or
L12 ¼ �L21. This property can be derived from time
reversibility and detailed balance of the underlying
microdynamics, and is therefore expected to have a very
wide range of validity. We will illustrate this state of
affairs on a system subject to a time-asymmetric periodic
driving and a three-terminal device with an external
magnetic field.
Linear irreversible thermodynamics.—The thermody-

namic processes that drive machines are generally induced
by a spatial or temporal variation in quantities such as
(inverse) temperature, chemical potential, pressure, etc.
These differences are responsible for so-called thermody-
namic forces, which we will denote by F. With every
thermodynamic force, one can associate a flux, for exam-
ple, a heat flux or a particle flux, denoted as J. The generic
function of a machine is to transform one type of energy
into another one. The simplest such construction thus
features two forces, one playing the role of a load force,
say F1, and another functioning as a driving force F2.
With proper definitions of fluxes and forces, the entropy
production or dissipation _S can be written as a bilinear
form [40,41]:

_S ¼ F1J1 þ F2J2: ð6Þ
The working regime is defined as a driving entropy
producing a flux, say J2 with F2J2 ≥ 0, generating another
flux J1 against its own thermodynamic force, F1J1 ≤ 0.
The standard example is that of a thermal machine,
where a downhill heat flux pushes particles up a
potential. The quantities of interest are the net dissipation
_S, given in Eq. (6), the power output P, which we define
as [42]

P ¼ −TF1J1; ð7Þ
and the efficiency η,

η ¼ −
F1J1
F2J2

: ð8Þ

The power output and efficiency are both positive by
definition of the working regime. In addition, the second
law _S ≥ 0 implies that, in the working regime, η ≤ ηr ¼ 1,

with the reversible limit η ¼ ηr reached for zero entropy
production, _S ¼ 0. Hence, one has

_S ≥ 0; P ≥ 0; 0 ≤ η ≤ ηr ¼ 1: ð9Þ

Finally, by their definitions, power, efficiency and entropy
production are not independent quantities but obey the
following relation:

T _S ¼ P
�
1

η
− 1

�
: ð10Þ

Focusing on the regime of linear irreversible thermody-
namics, one assumes that the thermodynamic forces are
small, so that the associated thermodynamic fluxes are
linear in the forces:

�
J1
J2

�
¼

�
L11 L12

L21 L22

��
F1

F2

�
: ð11Þ

The coefficients Lij are known as the Onsager coefficients.
For a given thermodynamic process, one can consider its
time inverse, denoted by a tilde. It is obtained by reversing
the time dependencies and inverting the variables, such as
speed and magnetic field, which are odd under time
inversion. The above coefficients satisfy the so-called
Onsager-Casimir symmetry ~Lij ¼ Lji, [43]. This relation
is particularly useful in the time-symmetric scenario with
even variables, for which it reduces to the celebrated
Onsager symmetry, Lij ¼ Lji [44,45].
We are now ready to calculate the values of the three key

quantities power, efficiency, and dissipation when perform-
ing the extremum of one of them with respect to the loading
force F1. In calculating the maximum efficiency and power,
we will assume them to be in the working regime. This
leads to nine expressions PMP, PME, PmD, ηMP, ηME, ηmD,
_SMP, _SME, _SmD, of which, in view of Eq. (10), six are
a priori independent. Straightforward algebra leads to the
following explicit expressions:

PMP ¼ T
L2
12F

2
2

4L11

; ηMP ¼
L2
12

4L11L22 − 2L12L21

; ð12Þ

PmD ¼ T
ðL2

12 − L2
21ÞF2

2

4L11

;

_SmD ¼ F2
2

�
L22 −

ðL12 þ L21Þ2
4L11

�
;

ð13Þ

PME ¼ −TF2
2ðL11L22 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L11L22ðL11L22 −L12L21Þ

p
Þ

×
ðL11L22 −L12L21 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L11L22ðL11L22 −L12L21Þ

p Þ
L11L2

21

;

ð14Þ
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ηME ¼ −ðL11L22 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L11L22ðL11L22 −L12L21Þ

p
Þ

×
ðL11L22 −L12L21 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L11L22ðL11L22 −L12L21Þ

p Þ
L2
21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L11L22ðL11L22 −L12L21Þ

p :

ð15Þ
The surprise is that there are, in fact, only three independent
quantities: one verifies by inspection the validity of the
relations (1) and (3). In the case of Onsager symmetry or
antisymmetry, these equations further simplify with the
appearance of one additional relation, cf. Eqs. (4) and (5).
Hence, we are left with only two independent quantities out
of the original nine, for example, any pair of power and
efficiency, _SmD and ηMP, _SmD and PMP, etc.
Multiple processes.—In a more general setting, a thermo-

dynamic machine can involve many processes with input
and output flux combinations of multiple subfluxes.
Keeping the notation of subindices i ¼ 1, 2 for loading
and driving quantities, respectively, the corresponding
fluxes Ji, forces Fi, and Onsager coefficients Lij are no
longer scalars but vectors and matrices, respectively.
Onsager-Casimir symmetry predicts ~Lij ¼ LT

ji. Although
the proof now requires some more involved matrix algebra
(cf. the Supplemental Material [46]), one can show that
the first set of power-efficiency-dissipation relations,
Eqs. (1)–(3), remain valid provided the optimum is carried
out with respect to all components of the loading force F1.
Under the same optimization, the second set of relations (4)
and (5) follows for Onsager matrices obeying the following
generalized Onsager condition:

L12;sL−1
11;sL12;s ¼ L21;sL−1

11;sL21;s;

L12;aL−1
11;sL12;a ¼ L21;aL−1

11;sL21;a ð16Þ

with Lij;s ¼ ðLij þLT
ijÞ=2, the symmetric part of the

matrix and Lij;a ¼ ðLij −LT
ijÞ=2 the antisymmetric part

of the matrix. We make the important observation that this
condition is satisfied for matrices obeying

L12 ¼ �LT
21; L12 ¼ �L21: ð17Þ

It is clear from Onsager symmetry that systems with time-
symmetric driving satisfy this condition, but it may also
hold for systems violating time-reversal symmetry. Indeed,
it has been shown that Onsager matrices of this form arise
as a consequence of detailed balance [27,35], even though
the setup itself might break time-reversal symmetry, cf. the
Supplemental Material [46]. Consequently, Eqs. (4) and (5)
are expected to have a wide range of validity, including
systems that break time symmetry. We stress again that the
optimization needs to be carried out with respect to all
components of the loading force. In the case of partial
optimization, the corresponding effective Onsager matrix
of lower rank no longer satisfies Eq. (16), and therefore

Eqs. (4) and (5) break down. On the other hand, Eqs. (1)
and (3) remain valid when the system is optimized with
respect to the reduced set of variables, since the latter
results are algebraic in nature, and do not require additional
physical input.
Two examples.—We illustrate the above results on two

systems that do not satisfy time-reversal symmetry: a
thermodynamic machine subject to explicit time-periodic
driving [27–29,35–37,47–50] and a three-terminal device
in an external magnetic field [15,51–58].
The first example is a work-to-work converter consisting

of a particle that can hop between two discrete energy
levels, cf. Fig. 1. Transitions are induced by a thermal bath,
while the periodic modulation (period T ) of the energy
levels via two external work mechanisms allows the
conversion of work extracted from the second source,
driving the second energy level, and delivered to the first
source, loading the first energy level. The time dependence
of the energy in each level i ¼ 1, 2 can be developed in
terms of its Fourier components:

EiðtÞ¼
X
n

Fði;n;sÞ sin
�
2πnt
T

�
þFði;n;cÞcos

�
2πnt
T

�
; ð18Þ

where the amplitudes Fði;n;cÞ and Fði;n;sÞ play the role of
thermodynamic forces, n refers to the Fourier mode, and c
and s refer to cosine and sine, respectively. Following
standard techniques from stochastic thermodynamics
[59–64], one can determine the explicit expression for
the elements of the associated Onsager matrix [27] (cf. the
Supplemental Material [46]):

Lð1;n;σÞ;ð2;n;σÞ ¼ −
4π3n3ð4π2n21þ T 2Wð0Þ2Þ−112peq

2

T
; ð19Þ

where Wð0Þ and peq are the transition matrix and equilib-
rium probability distribution associated with the state of
the particle in the absence of time-dependent driving, and
σ ¼ s, c. As a direct consequence of detailed balance,
Wð0Þ

12 p
eq
2 ¼ Wð0Þ

21 p
eq
1 , one finds

Lð1;n;σÞ;ð2;n;σÞ ¼ Lð2;n;σÞ;ð1;n;σÞ: ð20Þ

FIG. 1. Schematic representation of a periodically driven two-
level system in contact with a heat reservoir.
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Analogous relations are found for Lð1;n;σÞ;ð2;m;ρÞ, with ρ ≠ σ
and m ≠ n. We conclude that the following symmetry
relation holds:

Lð1;n;σÞ;ð2;m;ρÞ ¼ Lð2;n;σÞ;ð1;m;ρÞ; ð21Þ

which satisfies Eq. (17). Hence, the second set of power-
efficiency-dissipation relations, Eqs. (4) and (5), will be
verified, see also Ref. [36] for a similar conclusion in a
different model, and Fig. 2 for an illustration in case of a
time-symmetric driving.
As another example of a system with broken time-

reversal symmetry we consider a three-terminal thermo-
electric device in a magnetic field, cf. Fig. 3. In this setup,
three terminals are connected with each other via a central
scattering region, inducing a particle flux Jρ and a heat flux
Jq. In the working regime, the heat flux is from high to low
temperature, while the particle flux is from low to high
chemical potential. We assume that both fluxes are in the

direction of the second reservoir in Fig. 3. In this way heat
is converted into chemical energy. A magnetic field B can
be added to interact with the scattering region and break the
time-reversal symmetry. An additional constraint that is
often imposed is that the particle and heat flux through the
third terminal vanish. The resulting 2 × 2 Onsager matrix,
associated with the heat and particle flux between reservoir
1 and 2, is generally not symmetric, and the efficiency at
maximum power can reach values up to ηMP ¼ 4=7 [15],
clearly violating the second set of power-efficiency-
dissipation relations, Eqs. (4) and (5), cf. the
Supplemental Material [46]. Crucial to this analysis, how-
ever, is the constraint that the fluxes through the third
terminal are zero, which makes it impossible to fully
optimize the power output. Dropping the flux constraints
will introduce thermodynamic subfluxes associated with
the third terminal, and thereforeLρq andLqρ become 2 × 2
matrices.
In the present context of linear thermodynamics, we set

the reference values for the temperature and chemical
potential equal to those of the second reservoir, T ¼ T2

and μ ¼ μ2. The fluxes can be decomposed into a net flux
from the first to the second terminal and from the third
to the second terminal, JρðqÞ ¼ ðJρðqÞ;12; JρðqÞ;32Þ with the
associated thermodynamic forces Fρ ¼ ðe=TÞðμ1 − μ; μ3 −
μÞ and Fq ¼ ð1=T2ÞðT1 − T; T3 − TÞ, where e is the charge
of one electron. The behavior of the central region is
described by the scattering matrix SðE;BÞ, which gives the
fluxes of electrons with energy E between the different
terminals, when an external magnetic field B is applied
to the central region. The resulting Onsager matrix is given
by [65]

Lαβ ¼
Z

∞

−∞
dEfαβðEÞ½1 − Sð1;3ÞðE;BÞ� ð22Þ

with α; β ¼ ρ or q, Sð1;3ÞðE;BÞ the scattering matrix
associated with the first and the third terminal only, and
fαβðEÞ a function independent of the central scattering
region, and in particular of the presence of a magnetic field
(cf. the Supplemental Material [46]). Hence, it is invariant
under time-reversal symmetry and satisfies fρqðEÞ ¼
fqρðEÞ, implying Lρq ¼ Lqρ. We conclude that Eqs. (4)
and (5) will be valid when the optimization is carried
out without constraints on the third terminal. In particular,
the efficiency at maximum power will drop to a value
below 1=2.
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