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We study a model of bacterial dynamics where two interacting random walkers perform run-and-tumble
motion on a one-dimensional lattice under mutual exclusion and find an exact expression for the probability
distribution in the steady state. This stationary distribution has a rich structure comprising three
components: a jammed component, where the particles are adjacent and block each other; an attractive
component, where the probability distribution for the distance between particles decays exponentially; and
an extended component in which the distance between particles is uniformly distributed. The attraction
between the particles is sufficiently strong that even in the limit where continuous space is recovered for a
finite system, the two walkers spend a finite fraction of time in a jammed configuration. Our results
potentially provide a route to understanding the motility-induced phase separation characteristic of active
matter from a microscopic perspective.
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Self-propelled particles consume energy in order to
generate persistent motion and typically self-organize into
complex structures [1]. These particles may be naturally
occurring, for example, birds that flock [2], or synthetic,
such as photoactivated colloids that form “living crystals”
[3]. It has become apparent that the physics of such active
constituents may be far richer than traditional passive,
equilibrium matter.
The key distinction between passive and active particles

at the microscopic level is that the equations of motion for
the latter break time-reversal symmetry (also known as
detailed balance). For example, the continual consumption
of energy implies that individual collisions do not need to
conserve energy or momentum. At the macroscopic scale,
a robust finding is that self-propelled particles exhibit
motility-induced phase separation [4]: that is, a tendency
to cluster as a consequence of the particle velocity
decreasing as the local particle density increases. The
propensity for clusters to form is of great interest from a
fundamental perspective, and has given rise to a variety of
theoretical and computational studies [5–11]. Moreover,
clustering may have practical implications: for example,
bacteria are commonly found in aggregates called biofilms
which are important sources of human infection [12,13]
and contamination in the food industry [14].
Although various theoretical approaches have success-

fully reproduced some of the macroscopic properties of
clustering, most insights have arisen by coarse graining
over microscopic degrees of freedom to a greater or lesser
degree (see, e.g., Refs. [15–18] and also Refs. [1,4,19,20]
for reviews). This coarse-graining step leaves one unable
to pinpoint the precise origin of these phenomena.
Specifically, although self-propulsion must mediate an
effective attraction between otherwise repulsive particles

[21], no systematic method for determining the exact
form of this emergent attraction from the underlying
microscopic dynamics exists. Such a method would pave
the way towards a deeper understanding of the mechanism
behind motility-induced phase separation. Recent theoreti-
cal investigations have used a microscopic approach to
generate effective interactions, but they have been of an
approximate nature [22,23]. It thus remains of paramount
importance to establish exact results that shed light on the
path from the microscopic breaking of detailed balance to
the emergence of effective attractions.
In this work, we determine the exact analytical form of

the effective pair potential that emerges between a pair of
self-propelled particles undergoing the run-and-tumble
dynamics that characterizes certain bacterial species
(notably Escherichia coli [24,25]). In its most idealized
form [26], run-and-tumble motion consists of a series of
straight-line runs at velocity v, interspersed by tumble
events that occur as a Poisson process with rate α and which
instantly randomize a particle’s direction of motion.
Although in general the run velocity v may depend on
the local density of bacteria or the concentration of various
chemical species in the environment [17,26–28], and time
is spent tumbling without moving [24], we consider the
simplest case where the velocity v is constant and the
motion is in one dimension. Thus when a tumble occurs
with rate α, a velocity þv or −v is immediately adopted
with equal probability.
We also introduce a hard-core exclusion interaction

between the particles: when two particles collide, this
interaction causes the particles to remain stationary until
one of them reverses its velocity (occurring at rateω ¼ α=2).
It is this specific aspect of the dynamics that breaks detailed
balance: energy is not conserved in these collisions.
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Our main result is an exact expression for the steady-
state probability distribution of this pair of run-and-tumble
particles on a periodic lattice, which we can then interpret
as an effective pair potential. The distribution has a
surprisingly rich structure, and comprises a jammed com-
ponent in which the particles are facing each other on
neighboring lattice sites, an attractive component charac-
terized by an exponential decay over a finite separation
length, and an extended component in which all micro-
scopic configurations are equally likely. Most remarkably,
in a system of finite length, the particles spend a finite
fraction of their time in a jammed configuration even if the
lattice spacing of the discrete model is taken to zero, in
which limit the lattice model recovers run-and-tumble
dynamics in continuous space and time. Moreover, the
dynamics in the steady state exhibit some intriguing first-
passage properties, extending what has been established for
individual noninteracting run-and-tumble particles [29,30].
Let us define our lattice-based model of two run-and-

tumble particles in one dimension (see Refs. [31,32] for
related models). The particles occupy sites of a periodic
one-dimensional lattice of L sites and each has an ori-
entation σi ¼ � indicating its direction of motion. Because
of the translational invariance of the system, a microscopic
configuration is fully specified by 1 ≤ n < L, the distance
between the two particles in units of the lattice spacing, and
the two particle velocities, σ1 and σ2. A right-moving
particle (σi ¼ þ) hops one site to the right with rate γ;
likewise, a left-moving particle (σi ¼ −) hops with rate γ to
the left. The exception is when the target site is occupied by
another particle, in which case hopping is not allowed; this
implements the hard-core exclusion interaction. Particles
may also reverse their velocity at rate ω ¼ α=2, where α is
the tumbling rate described above. By rescaling time, we
can take γ ¼ 1 without loss of generality. Figure 1 illus-
trates the two-particle dynamics for the case where ω ≪ γ.
We now present exact expressions for the steady-state

probability Pσ1σ2ðnÞ of finding the two particles with
velocities σ1,σ2 and separated by n sites. These read

PþþðnÞ ¼
1

Z
½pðzÞðzn þ zL−nÞ þ qðzÞ�; ð1Þ

and

Pþ−ðnÞ ¼
1

Z
½p0ðzÞðzn − zL−nÞ þ qðzÞ þ δn;1ΔðzÞ�; ð2Þ

where

z ¼ 1þ ω −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωð2þ ωÞ;

p
ð3Þ

pðzÞ ¼ 1 − z2; ð4Þ

p0ðzÞ ¼ 1 − z
1þ z

pðzÞ ¼ ð1 − zÞ2; ð5Þ

qðzÞ ¼ ð1 − zÞ2ð1 − zLÞ; ð6Þ

ΔðzÞ ¼ 2ð1þ zÞðz − zLÞ; ð7Þ

and

Z ¼ 4½ΔðzÞ þ ðL − 1ÞqðzÞ�: ð8Þ

The symmetries of the model imply that PþþðnÞ ¼ P−−ðnÞ
and Pþ−ðnÞ ¼ P−þðL − nÞ, leaving only PþþðnÞ and
Pþ−ðnÞ independent. These exact expressions are obtained
by solving the master equation for the stationary probability
distribution using a generating function approach (see
below and Supplemental Material [33]). Note that the
key parameter z lies in the range 0 < z < 1; thus, pðzÞ,
p0ðzÞ, qðzÞ, and ΔðzÞ are all positive.
Equations (1) and (2) reveal that the stationary distri-

bution is a sum of three distinct components which we now
explicitly identify. At large separations n, L − n ≫ 1, we
have a uniform particle distribution ∝ qðzÞ, independent of
n as for regular diffusion. This component of the distri-
bution fills the whole of phase space, and we refer to it
as extended. At intermediate separations, the probability
distribution for the separation between particles decays
exponentially as zn with a characteristic length scale
ξ ¼ 1=j lnðzÞj. By analogy with quantum mechanical wave
functions with exponentially decaying amplitudes, we can
think of this attractive component as a bound state. Finally,
there is a contribution from the jammed configurations that
have particles facing each other on adjacent sites (n ¼ 1).
Although we are dealing with an inherently nonequili-

brium steady state, we may nevertheless recast Eqs. (1) and
(2) in the form of effective pair potentials Vσ1σ2ðnÞ ¼
− lnPσ1σ2ðnÞ by analogy with the Boltzmann distribution
P ∝ e−V : these are plotted in Fig. 2. Three distinct pieces of
the potentials corresponding to the three components of the
particle distribution are evident. At large separations, n,
L − n ≫ 1, the effective potentials are constant. At inter-
mediate separations, the potentials are linear and attractive.

FIG. 1. Simulation of model system: A space-time plot (time in
the vertical direction) of a simulation of two run-and-tumble
random particles on a one-dimensional ring of 100 sites in the low
tumble-rate regime with particles reversing their direction after
traversing 100 lattice sites on average. The full and dotted
trajectories each represent an individual particle.
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Finally, there is a nearest-neighbor (n ¼ 1) delta function
attractive potential. This attraction is very strong when the
reversal rate ω is small.
The origin and physics of the different components of

the stationary distribution can be understood from limiting
cases. When velocity reversal is rapid, ω → ∞, we antici-
pate that standard diffusion should be recovered, as
memory of a particle’s velocity is erased between each
hop. Summing over all four velocity states we obtain the
total probability that the two particles are a distance n apart,
which in the limit ω ≫ 1 becomes

PðnÞ∼ 1

L− 1

�
1þ 1

2ω

�
δn;1 þ δn;L−1 −

2

L− 1

�
þO

�
1

ω2

��
:

ð9Þ
At leading order, only the extended component survives,
and we thus identify repeated velocity reversal as the
physical origin of this contribution to the stationary
distribution. The jammed component provides the leading
correction, while the attractive component does not enter at
order Oð1=ωÞ.
For the opposite limit, ω → 0, the limiting forms of

Eqs. (1) and (2) are

PþþðnÞ ¼
1

4ðL − 1Þ and Pþ−ðnÞ ¼
1

4
δn;1; ð10Þ

with corrections of order Lω, implying that these expres-
sions (10) are valid when ω ≪ 1=L. In this regime,
particles hop many times between velocity reversals, and
so in this limit we expect the stationary distribution in each
velocity sector to approximate that which would be reached
in the absence of any tumbling. For the case where particles
are approaching (þ−), the particles quickly (on the time
scale of tumbling) reach the jammed configuration, n ¼ 1.
When they exit this state into one where both particles have
the same velocity (e.g., þþ), fluctuations in the distance

traveled by each particle, generated by the stochastic
particle hopping dynamics, cause the distribution of the
relative coordinate to broaden. When this tumble rate is
low, the distribution broadens to fill the entire system,
thereby generating a uniform distribution, but one that is
crucially distinct from the extended component that arises
from velocity reversals. This picture of the dynamics is
corroborated by the space-time plots shown in Fig. 1. At
higher tumble rates, the broadening of the distribution is
curtailed on the time scale of tumbling, and is later restarted
from the jammed configuration n ¼ 1. This process is
similar to that of diffusion (here, of the particle separation)
with stochastic resetting (to the jammed configuration),
which generates the exponentially decaying attractive
component of the distribution [34]. One can thus think
of this component as an echo of the jammed configuration.
Finally, and most interestingly, we examine the scaling

limit ω → 0, L → ∞with ωL held fixed, in which run-and-
tumble dynamics in continuous space and time is recov-
ered. To see why, we introduce the physical system size l
and reinstate the run rate γ which had previously set the unit
of time. Then, the mean run velocity is v ¼ γl=L, and the
velocity reversal rate ω ¼ α=2γ ¼ αl=2Lv, where α is the
tumble rate described in the introduction. Substituting into
Eqs. (1) and (2), and introducing the continuous spatial
separation x ¼ nl=L, yields the exact expressions

PþþðxÞ ¼
αþ 2vδðxÞ þ 2vδðl − xÞ

4ðαlþ 4vÞ ; ð11Þ

and

Pþ−ðxÞ ¼
αþ 4vδðxÞ
4ðαlþ 4vÞ ; ð12Þ

in the limit L → ∞ [35]. In contrast to the other two limits
considered so far, all three components of the stationary
distribution survive in the scaling limit. The extended and
attractive components are present in the þþ and −−
sectors, Eq. (11). In particular, the length scale
ξ≃ 1=ð2ωÞ1=2 of the exponential decay corresponds to a
microscopically large number of lattice sites of order

ffiffiffiffi
L

p
.

This is, however, small on the macroscopic scale, where
each unit of length comprises ∼L lattice sites; thus the
attraction is confined to a fraction ∼1=

ffiffiffiffi
L

p
of the total

system. At the same time, the amplitude of this exponential
decay diverges as

ffiffiffiffi
L

p
, and hence this component is

manifested as the delta function appearing in Eq. (11)—
this delta function thus represents an attractive state in
which particles move together with zero separation.
Meanwhile, the extended and jammed components appear
in Eq. (12), where here the delta function has its origins in
the Kronecker delta that appears in Eq. (2) and represents a
jammed configuration. From Eq. (12), we see that the
particles spend a fraction v=ðαlþ 4vÞ of time in each of

FIG. 2. Effective pair potentials, defined by the logarithms of
the probability distributions, PþþðnÞ and Pþ−ðnÞ, for the case of
L ¼ 100 lattice sites and velocity reversal rate ω ¼ 0.01. These
distributions have three components: jammed (indicated), attrac-
tive (linear piece at intermediate separations), and extended
(constant piece at large separations).
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the two symmetrically related jammed configurations and
from Eq. (11) that a fraction v=½2ðαlþ 4vÞ� is spent in
each of the four attractive states with zero separation. Thus
the total fraction of time spent in a state in which particles
are adjacent (x ¼ 0 or l) is 4v=ðαlþ 4vÞ.
We can also determine some features of the dynamics in

the scaling limit. In particular, the mean time spent in an
adjacent state after a collision can be worked out from the
fact that this state is left after exactly 2k velocity reversal
events (k ¼ 1; 2;…) with probability 2−k. This is because
particles are necessarily in the jammed state when they
collide: the first reversal always causes the particles to both
move at speed v while remaining adjacent, and the next
reversal either causes the particles to move apart or to re-
enter a jammed configuration, each with equal probability.
Since the total velocity reversal rate is 2ω ¼ α, it follows
that the mean time between reversals is 1=α, and the mean
time spent in an adjacent state is 4=α. Comparing this with
the above result for the total fraction of the time spent
in such a state, we deduce that the mean time between
entering and leaving a nonadjacent state is l=v (a result
confirmed with an explicit first-passage time calculation
[36]). Intriguingly, this result is independent of the tumble
rate α, despite the fact that particles must typically tumble
over this lifetime: otherwise, the time spent in this state
would be close to its minimum value l=2v.
We now outline the derivation of Eqs. (1) and (2). We

start with the set of master equations governing the time
evolution of the probabilities in the four velocity sectors:

_PþþðnÞ ¼ Pþþðn − 1ÞIn>1 þ Pþþðnþ 1ÞIL−n>1
þ ω½Pþ−ðnÞ þ P−þðnÞ�
− PþþðnÞ½2ωþ In>1 þ IL−n>1�; ð13Þ

and

_Pþ−ðnÞ ¼ 2Pþ−ðnþ 1ÞIL−n>1 þ ω½PþþðnÞ þ P−−ðnÞ�
− Pþ−ðnÞ½2ωþ 2In>1�; ð14Þ

along with counterparts for P−þðnÞ and P−−ðnÞ which
follow from the symmetries P−−ðnÞ ¼ PþþðnÞ and
P−þðnÞ ¼ Pþ−ðL − nÞ. In these equations the indicator
Ik>1 ¼ 1 if k > 1 and is zero otherwise. One can, of course,
check that Eqs. (1) and (2), supplemented with Eqs. (3)–(8),
give the stationary solution of these equations. To actually
construct the stationary solution, we introduce the gene-
rating functions Gσ1σ2ðxÞ ¼

P
L−1
n¼1 x

nPσ1σ2ðnÞ. Packaging
these generating functions into a vector GðxÞ, and perform-
ing the appropriate summations, we obtain a linear
system AðxÞGðxÞ ¼ bðxÞ where the elements of b do not
involve the functions Gσ1σ2ðxÞ. Then, it remains to evaluate
GðxÞ ¼ A−1ðxÞbðxÞ.

In order to obtain Eqs. (1) and (2) one must invert GðxÞ.
However, one still needs to fix Pþþð1Þ and Pþ−ð1Þ, which
are not a priori known. These constants are fixed by noting
that A−1ðxÞ has poles at x ¼ 1, x ¼ z and x ¼ 1=z, where z
and 1=z are the two roots of the symmetric polynomial
x2 − 2ð1þ ωÞxþ 1 ¼ 0. This implies an apparent
divergence in the generating functions Gσ1σ2ðxÞ which
is inconsistent with the fact that these functions are
polynomials of degree L − 1 and finite for all x.
Therefore, the poles in A−1ðxÞ must be canceled by zeros
in the numerator bðxÞ. This nontrivial pole-zero cancelation
implies one relation between the two constants, Pþþð1Þ
and Pþ−ð1Þ. The other required relation is given by the
normalization of probability. Fixing the constants (see
Supplemental Material for details [33]), one finds that
the poles of A−1ðxÞ at x ¼ 1; z and 1=z correspond to a
constant term and terms in zn and z−n in Pσ1σ2ðnÞ,
respectively, as in Eqs. (1) and (2).
We conclude by considering how knowledge of an exact

pair potential may bear on generalizations to many-body and
higher-dimensional systems.We discuss themany-body case
first. In Fig. 3 we compare simulations of hard-core particles
in one dimension that hopwith equal probability to the left or
the right in each time step (left panel) with the run-and-
tumble dynamics that is the focus of this work (right panel).
The former dynamics is a diffusion process satisfying
detailed balance, which relaxes to a homogeneous steady
state where all configurations are equally likely. Strikingly,
breaking detailed balance by introducing run-and-tumble
dynamics causes an inhomogeneous steady state with
multiple clusters to appear (see also Refs. [31,32]). Our
calculations suggest that the jamming and attraction of pairs
of particles may be responsible for this effect. An important
open question is whether an effective many-body potential,
obtained by treating a summation of the pair potentials
presented here as an ansatz, correctly predicts the physics of
the many-body state.
In principle, it should also be possible to generalize the

exact calculation of the pair potential to two or more

FIG. 3. Space-time plots (time in the vertical direction) of 60
hard-core particles undergoing symmetric random walks (left)
and run-and-tumble motion (right) on a lattice of 300 sites. The
initial condition and the particle hop rate is the same in both
cases. In the run-and-tumble dynamics, ω ¼ 0.01. The clustering
of particles induced by the nonequilibrium run-and-tumble
dynamics is clearly evident (see also Refs. [31,32]).
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dimensions. In particular, in two dimensions, a pair of
diffusing particles (of finite size) will eventually collide
with each other [37]. By analogy with the one-dimensional
problem here, we expect the jammed state to be present for
a finite fraction of the time, and for a jammed state “echo”
to give rise to an attractive interaction. The form of the
corresponding potential might provide insight into whether
one expects dense clusters to coarsen indefinitely leading to
phase separation which, for active particles with direct
repulsive interactions, experiments and simulations have
been unable to observe directly due to the slow dynamics of
aggregation [8,32,38] .
Finally, the significance of the jamming and attraction

established here in a simple model could be determined by
investigating the effect of additional features of bacterial
dynamics on the pair potential such as a finite tumbling
duration [24], variable run velocity in response to chemical
potentials [27,28], or hydrodynamic interactions between
particles [39]. Testing our predictions directly might be
possible if microchannel experiments confining a single
run-and-tumble bacterium to one dimension while retaining
its bulk motility pattern were extended to two interacting
bacteria [40]. Of course, the greatest insights of all would
come from exact solutions of the many-body problem in
arbitrary dimensions. This, however, remains a theoretical
challenge.
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