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Strong electron interactions can lead to a variety of broken-symmetry phases in monolayer graphene. In
the quantum Hall regime, the interaction effect are enhanced by the formation of highly degenerate Landau
levels, catalyzing the emergence of such phases. Recent magnetotransport studies show evidence that the
ν ¼ 0 quantum Hall state of graphene is in an insulating canted antiferromagnetic phase with the Néel
vector lying within the graphene plane. Here, we show that this Néel order can be detected via two-terminal
spin transport. We find that a dynamic and inhomogeneous texture of the Néel vector can mediate nearly
dissipationless (superfluid) transport of spin angular momentum polarized along the z axis, which could
serve as a strong support for the antiferromagnetic scenario. The injection and detection of spin current in
the ν ¼ 0 region can be achieved using the two spin-polarized edge channels of the jνj ¼ 2 quantum Hall
state. Measurements of the dependence of the spin current on the length of the ν ¼ 0 region would provide
direct evidence for spin superfluidity.
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Introduction.—The unique electronic properties of gra-
phene (a monolayer of graphitic carbon) stem from its
hexagonal crystal structure, giving rise to relativistic effects
at electronic velocities well below the speed of light [1].
Graphene is the thinnest and the strongest of 2D materials,
and an outstanding electrical and heat conductor, holding
great promise as a building block for future electronic
devices [2]. A hallmark of graphene’s electronic properties
is manifested in magnetotransport. For instance, graphene’s
integer quantum Hall (QH) states with anomalous filling
fractions ν ¼ �4ðnþ 1=2Þ [3] directly reflect the weakly
interacting massless relativistic nature of its low-energy
excitations and the fourfold degeneracy associated with the
electron spin and valley isospin. The valley degree of
freedom distinguishes between the two inequivalent “Dirac
points” in the Brillouin zone where the conduction and
valence bands of graphene touch [4].
Under high enough magnetic fields, electron-electron

interactions can give rise to additional QH states [5,6],
including the ν ¼ 0 state at the charge neutrality point. The
appearance of the ν ¼ 0 QH state indicates that electron-
electron interactions can induce SU(4)-symmetry breaking
within the spin-valley space and lift the fourfold degen-
eracy of the zeroth Landau level [7,8]. A challenge is to
understand precisely how this symmetry is broken. Charge-
transport experiments, utilizing both the two-terminal and
Hall-bar geometries, suggest that the bulk and edge charge
excitations for the state are gapped [5]. Furthermore, the
recent observation of gapless edge-state reconstruction in a
tilted magnetic field [6] is consistent with the scenario
where the ν ¼ 0 ground state is a canted antiferromagnetic
(CAF) insulator [7]. In the CAF state, the spins SA on

sublattice A and the spins SB on sublattice B have different
relative orientations; in the presence of an external mag-
netic field B normal to the graphene plane (defined to be the
xy plane), the total spin SA þ SB points antiparallel to the
field while the Néel vector SA − SB lies in the graphene
plane. Despite these recent developments, a more direct
experimental verification of this CAF scenario would be
highly desirable.
Essentially disjoint from the field of graphene QH

physics, the field of spintronics is witnessing an increasing
interest in realizing spin transport through magnetic insula-
tors via coherent collective magnetic excitations, which
allows for superfluid (nearly dissipationless) transport of
spin [9,10]. A recent theoretical work has shown that such
superfluid spin transport can be realized in antiferromag-
netic insulators using a two-terminal device [10]: by
laterally attaching two strongly spin-orbit-coupled normal
metals at two opposite ends of the insulator, both spin
injection and detection could be achieved via electrical
means using direct and inverse spin Hall effects.
Transplanting this idea to the purported ν ¼ 0 CAF state
in graphene, superfluid transport of spin polarized along the
z axis could be supported by the CAF via a dynamic Néel
texture that rotates about the z axis within the graphene
plane [10]. The observation of such spin superfluidity
would constitute direct evidence for the CAF scenario.
Moreover, graphene is an ideal candidate for the observa-
tion of superfluid transport because the spin anisotropy
should be extremely small in this system.
Superfluid spin transport.—We begin with a heuristic

discussion of how superfluid spin transport through the
CAF state can be achieved. We propose a device shown in
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Fig. 1(a), where the central CAF region is sandwiched by
two ν ¼ −2 QH regions; we ignore the effects of thermal
fluctuations of the spins in the CAF. Spin injection into the
CAF is achieved using the two copropagating edge
channels of the left ν ¼ −2 region. Based on the theory
of QH ferromagnetism [11] these edge channels, away
from the injection region [shaded in green, which includes
the vertices labeled by a and b (represented by red circles in
Fig. 1(a)), and the line junction linking the two vertices],
are in oppositely polarized spin states (labeled ↑;↓)

collinear with the external field (along the z axis). The
two edge channels are expected to undergo very little
equilibration outside the injection region [12], so that they
can be independently biased by the reservoirs from which
they originate, i.e., Vσ .
Figure 1(b) shows a cut across the bold red line in

Fig. 1(a) viewed from the side along the y direction.
Because of an applied field B normal to the graphene
plane and antiferromagnetic correlations induced by elec-
tron interactions, spins SA on sublattice A and SB on
sublattice B in the CAF state lie nearly antiparallel within
the graphene plane with a slight canting out of the plane by
an angle determined by the ratio between the valley isospin
anisotropy and Zeeman energy scales [8]. As shown in
Fig. 1(b), the spin quantization axes of the edge states along
the line junction may deviate away from the �z directions
due to the effective field created by the neighboring CAF.
We label these canted spin states by ⇑ and ⇓.
When V↑ > V↓, interchannel scattering may occur

inside the injection region, entailing redistributed charge
currents I↑ and I↓ emanating from the region and a net loss
of spin (polarized along the z axis) inside the region.
Neglecting any external sources of spin loss in the injection
region (e.g., spin-orbit coupling, magnetic impurities, etc.),
the net spin lost in the edge should be absorbed by the CAF,
leading to the injection of spin current (hereafter always
defined to be the component polarized along the z axis) into
the CAF. This will induce the CAF into a dynamic steady
state, in which the local Néel vector in the CAF rotates
about the z axis with a global frequency Ω (see Fig. 2) [10].
The dynamic Néel texture will, in turn, pump spin current
[13] out into the edge channels in the detection region,
resulting in the transport of spin from the injection to the
detection side [the detection region, involving vertices a0
and b0, is shaded in blue in Fig. 1(a)]. We initially leave the
two detection channels unbiased, i.e., V 0

↑ ¼ V0
↓ such that

the spin current entering the detection region is zero.
However, the injection of spin current from the CAF into

(a)

(b)

FIG. 1. Proposed setup for realizing and detecting superfluid
spin transport through the ν ¼ 0 QH state of graphene. (a) Top
view of the graphene Hall bar. The yellow regions are top gates
and the gray regions denote Ohmic contacts held at their
respective voltages. Two independently biased spin-polarized
edge channels on opposite sides of the ν ¼ 0 region are used to
inject and detect spin current flowing through the CAF. The spin
states of the ν ¼ −2 edge channels are polarized collinearly to the
z axis outside of the injection and detection regions. (b) A cartoon
energy diagram at a ν ¼ 0 to ν ¼ −2 transition region (across the
bold red line). The spin axes are viewed from the side along the y
direction. In the ν ¼ −2 region, the energies of the two spin
states, oppositely polarized along the z axis, are drawn; the
Zeeman effect gives an energetic advantage to the spin-down
state. In the ν ¼ 0 region, the two occupied branches of the CAF
spectrum are shown. There, an external field in the positive z
direction results in a ferromagnetic canting of spins in the
negative z direction inside the antiferromagnet. Spin orientations
of the chiral edge modes are intermediate between the up and
down spin eigenstates within the ν ¼ −2 region (left side) and the
canted spins within the CAF (right side). The black lines are
merely a rough guide for the energies of the spin states in the
transition region. The above illustration does not contain two
other branches of the spectrum that are a part of the zeroth Landau
level but not essential for the edge physics in the transition region.

FIG. 2. A cartoon of the CAF in a dynamic superfluid state. The
Néel vector rotates within the graphene plane about the z axis
with a global precession frequency Ω. The static contribution to
spin current Īs ∝ V− ¼ V↑ − V↓ is injected into the CAF while
the dynamic (spin-pumping) contribution is ∝ Ω pumps spin
current back out into the edge. Two analogous contributions exist
on the detection side.
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the detection edge will generate a redistribution of charges
on the two channels, and result in I0↑ ≠ I0↓. Therefore, the
spin current ejected at the detection edge is directly
determined by measuring the spin current exiting the
detection region.
Phenomenology and main results.—We now place the

above heuristic discussion on more quantitative grounds.
The discussion below closely follows Ref. [10]. Once the
dynamic steady state is established in the CAF, the spin
current Is entering the CAF at the injection edge has two
contributions: Is ¼ Īs þ is, where Īs is the spin current
injected into a static CAF in equilibrium, and is is the spin-
pumping (dynamic) contribution describing spin current
pumped back out to the edge due to the nonequilibrium
Néel dynamics (see Fig. 2) [13]. The static contribution,
within linear response, reads Īs ¼ ðℏ=2eÞ½gQðV↑ − V↓Þ−
ðĪ↑ − Ī↓Þ�, where gQ ≡ e2=h and e > 0 is the magnitude of
the electron charge; Īσ denotes the charge currents ema-
nating from the injection region in the static limit. Because
of charge conservation, and the fact that equally biased
edge channels lead to equal outgoing charge currents (i.e.,
V↑ ¼ V↓ implying Ī↑ ¼ Ī↓), the charge currents emanating
from the injection region can be written generally as
Īσ ¼ gQ½Vþ þ σð1 − γÞV−�=2, where V� ¼ V↑ � V↓ and
σ ¼ � corresponds to the ↑ and ↓ channels, respectively.
The real parameter 0 ≤ γ ≤ 1 characterizes the strength of
interchannel scattering in the injection region (it is explic-
itly computed using a simple microscopic model later in
this work). The limit of no interchannel scattering corre-
sponds to γ ¼ 0, while the limit of strong scattering (full
equilibration between the channels) corresponds to γ ¼ 1.
Inserting Īσ into the expression for Īs, one obtains

Īs ¼
ℏ
2e

gQγV−: ð1Þ

The dynamical contribution is follows from Eq. (1) via
Onsager reciprocity. To see this, we first define two
continuum variables in the CAF that are slowly varying
on the scale of the magnetic length: nðxÞ and mðxÞ, nðxÞ
being the unit vector pointing along the local Néel order
and mðxÞ being the local spin density. The uniform
frequency Ω of the rotating Néel texture effectively acts
as an additional magnetic field in the z direction, intro-
ducing a uniform canting of the CAF spins along the z
direction in addition to the existing canting due to the
external field. Therefore, the dynamic steady state is
characterized by a uniform mðxÞ ¼ mzez. Defining the
total spinMz ¼ mzLW, where L andW are the dimensions
of the CAF region [see Fig. 1(a)], the temporal change in
Mz, in the presence of the injected spin current Is, should
read

_Mz ¼ Is þ � � � ; ð2Þ

where the ellipsis denotes terms arising from the intrinsic
dynamics within the CAF. Inserting the static contribution
(1) for Is in Eq. (2) introduces terms linear in V↑ and V↓,
which are the forces conjugate to the charge currents I↑ and
I↓, respectively. Onsager reciprocity then endows the static
contributions Īσ with a dynamic contribution as

Iσ ¼ Īσ − σ
ℏ
2e

gQγfMz
; ð3Þ

where fMz
≡ −δMz

F is the force conjugate to Mz and F is
the free energy of the CAF [in obtaining Eq. (3), we have
assumed a symmetry S of the device in Fig. 1(a) under time
reversal followed by a π spatial rotation about the x axis].
Noting that the force fMz

relates to the local Néel vector via
fMz

¼ −ðn × _nÞ · ez ≈ −Ω [10], the total injected spin
current Is ¼ ðℏ=2eÞ½gQðV↑ − V↓Þ − ðI↑ − I↓Þ� can be
obtained using Eq. (3) as Is ¼ ðγ=4πÞðeV− − ℏΩÞ≡
Īs þ is. Based on an analogous consideration on the
detection side, the total spin current injected into the edge
from the CAF becomes I0s ¼ −ðγ0=4πÞðeV−

0 − ℏΩÞ≡
Ī0s þ i0s, where γ0 is the interchannel scattering parameter,
analogous to γ, for the detection side. Fixing the voltages of
the electron reservoirs on the detection side to zero, i.e.,
V 0
↑;↓ ¼ 0, we obtain I0s ¼ i0s.
In the absence of any sources of spin loss in the CAF

bulk (i.e., no Gilbert damping) we have Is ¼ I0s, and the
global frequency should read

ℏΩ ¼ γ

γ þ γ0
eV−: ð4Þ

Then, the amount of spin current generated on the detection
side by the superfluid spin transport reads

I0s ¼
1

4π

γγ0

γ þ γ0
eV−: ð5Þ

Equations (4) and (5) constitute the main results of this
work, and they predict that the spin current should be
independent of the length L. In graphene, intrinsic spin-
orbit effects are very weak, so it should be reasonable to
ignore Gilbert damping as a first approximation, as we do
here. We discuss the effects of finite Gilbert damping in the
Supplemental Material [14]. There, we show that for fixed
W and γ, γ0, Gilbert damping leads to a decay in the spin
current through the ν ¼ 0 region with the length L.
Since the CAF region has vanishing electrical conduc-

tivity the currents I0↑ and I0↓, which enter the contacts
labeled V 0

↑ and V
0
↓, must satisfy I0↑ þ I0↓ ¼ 0. Therefore, the

currents, which may be measured directly, will be related to
the transmitted spin current by I0↑ ¼ −I0↓ ¼ eI0s=ℏ.
Kinetic theory for injection and detection regions.—We

now develop a simple microscopic model for the
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parameters γ and γ0. On the injection side, γ quantifies the
extent to which the two edge channels equilibrate inside the
injection region. Within linear response, γ can be evaluated
for the (static) CAF in equilibrium. At vertices a and b, the
relative spin misalignment between the ð↑;↓Þ and ð⇑;⇓Þ
states together with sources of momentum nonconservation
there (e.g., edge disorder and the sharp directional change
of the edge) can give rise to interchannel charge scattering.
The redistribution of charges at these vertices must obey
charge conservation, and can be parametrized by an energy-
independent transmission probability t ∈ ½0; 1� (under the
assumed symmetry S, the two vertices are characterized by
an identical probability)

�
I⇑ð0Þ
I⇓ð0Þ

�
¼ gQŜ

�
V↑

V↓

�
;

�
I↑
I↓

�
¼ Ŝ

�
I⇑ðWÞ
I⇓ðWÞ

�
; ð6Þ

where IσðyÞ (with σ ¼ ⇑;⇓) is the local charge current
flowing along the line junction in edge channel σ, Ŝ ¼ tσ̂0 þ
ð1 − tÞσ̂x is the scattering probability matrix at the vertices,
and σ̂0 and σ̂x are the 2 × 2 identity matrix and the x
component of the Pauli matrices, respectively (see Fig. 3).
The occurrence of interchannel scattering within the line

junction requires (i) spatial proximity of the two channels,
such that there is sufficient overlap of their orbital wave
functions, (ii) elastic impurities, providing the momentum
nonconserving mechanism necessary to overcome the
mismatch in Fermi momenta of the two channels, and
(iii) a spin-flip mechanism, assumed here to be provided by
the neighboring CAF. All three factors go into defining the
interchannel tunneling conductance gðyÞ per unit length,
which we treat phenomenologically here. In terms of gðyÞ,
the change in current on channel σ is given by δI⇑;⇓ðyÞ ¼
∓ gðyÞ½V⇑ðyÞ − V⇓ðyÞ�δy, where Vσ is the local voltage
on edge channel σ [we assume that the edges are always
locally equilibrated at all points y such that the voltage at
each point is related to the local current through
VσðyÞ ¼ IσðyÞ=gQ]. Then, the currents inside the line
junction satisfy

∂I⇑
∂y ¼ −

∂I⇓
∂y ¼ −

gðyÞ
gQ

½I⇑ðyÞ − I⇓ðyÞ�: ð7Þ

Assuming a position-independent tunneling conductance g
and defining the edge equilibration length l≡ gQ=2g, the
currents entering vertex b are then given by (see Fig. 3)

�
I⇑ðWÞ
I⇓ðWÞ

�
¼ 1

2

�
1þ e−w 1 − e−w

1 − e−w 1þ e−w

��
I⇑ð0Þ
I⇓ð0Þ

�
; ð8Þ

where w ¼ W=l. Combining Eqs. (6) and (8), we obtain
γ ¼ 1 − ð1 − 2tÞ2e−w. A fully analogous consideration on
the detection side leads to γ0 ¼ 1 − ð1 − 2t0Þ2e−w0

, where
w0 ¼ W=l0, t0 is the transmission probability at vertices a0
and b0, and l0 is the edge equilibration length associated
with the line junction on the detection side.
The results are now discussed for the symmetric case, in

which t ¼ t0 and l ¼ l0. In Fig. 4, we plot the effective spin
conductance through the CAF,Gs

eff ≡ I0s=eV− [see Eq. (5)],
as a function of w for different t. Full mixing of the edge
channels at the vertices, i.e., t ¼ 0.5, entails local spin
injection at vertex a. Therefore, increasing the width of the
sample has no effect on the effective spin conductance. If
no scattering occurs at the vertices, i.e., t ¼ 1, spin current
is injected only along the line junction. For widths smaller
than the equilibration length, i.e., w < 1, increasing the
width gives an enhancement in the injected spin current,
and a linear increase in Gs

eff ∝ w is obtained (see the dotted
line). However, as the width increases beyond the equili-
bration length, spin injection no longer increases and the
conductance saturates at a value 1=8π. For partial inter-
channel mixing at the vertices, 0.5 < t < 1, some spin
current is injected at vertex a so a finite conductance entails
even in the limit of w → 0 (see the dashed line). With
increasing width, the conductance also increases until the
width, again, reaches of order the edge equilibration length.
Conclusions.—In this work, we present a proposal to

detect spin superfluidity in the ν ¼ 0 quantum Hall state of
graphene. An observation of long-ranged (superfluid) spin
transport through the ν ¼ 0 state will constitute direct
evidence for the CAF ground state purported recently.

FIG. 3. The injection region. Charge currents entering vertices
a and b redistribute according to the scattering probability matrix
Ŝ. The interchannel scattering inside the line junction is quanti-
fied by an effective conductance gðyÞ per unit length.

FIG. 4. Effective spin conductance Gs
eff ≡ I0s=eV− as a function

of the aspect ratio w ¼ W=l. The solid, dashed, and dotted curves
are, respectively, for full (t ¼ 0.5), partial (t ¼ 0.75), and no
(t ¼ 1) interchannel mixing at the vertices.
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Important open questions with regard to the feasibility of
our proposal relate to the fact that we have only been able to
estimate the efficiency of spin transfer between the edges
and the CAF state. In particular, we do not have a precise
understanding of how the interchannel scattering strength
gðyÞ depends on disorder along the edge and on the profile
of the electrostatic potential between the ν ¼ 0 and ν ¼ −2
regions. Furthermore, we do not have a complete knowl-
edge of the possible sources of spin loss in the injection and
detection regions. This calls for further detailed theories of
the injection and detection mechanisms as well as for
experiments testing our proposal in practice.
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