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Quantum fluctuations are the origin of genuine quantum many-body effects, and can be neglected in
classical mean-field phenomena. Here, we report on the observation of stable quantum droplets containing
∼800 atoms that are expected to collapse at the mean-field level due to the essentially attractive interaction.
By systematic measurements on individual droplets we demonstrate quantitatively that quantum
fluctuations mechanically stabilize them against the mean-field collapse. We observe in addition the
interference of several droplets indicating that this stable many-body state is phase coherent.
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Uncertainties and fluctuations around mean values are
one of the key consequences of quantum mechanics. At the
many-body level, they induce corrections to mean-field
theory results, altering the many-body state, from a
classical factorizable to an entangled state. Owing to their
versatility, ultracold atom experiments offer numerous
examples of interesting many-body states [1]. Among these
systems, bosonic superfluids are well studied. They are
described in the weakly interacting regime by a mean-field
energy density proportional to the square of the particle
density n2, with a negative prefactor in the attractive case.
Since the seminal work of Lee, Huang, and Yang [2], it is
known that interactions lead to a repulsive correction ∝
n5=2 owing to quantum fluctuations. Therefore, an equi-
librium between these two contributions can in principle
stabilize an attractive Bose gas [3]. A similar stabilization
mechanism using quantum fluctuations was proposed for
an attractive Bose-Bose mixture in Ref. [4], which leads
to the formation of droplets. In this reference liquidlike
droplets are defined as the result of a competition between
an attractive n2 and a repulsive n2þα term in the energy
functional. Besides liquid helium droplets [5], such func-
tionals are also used to describe atomic nuclei [6]. Here, we
study a strongly dipolar Bose gas where the attractive
mean-field interaction is due to the dipole-dipole inter-
action (DDI). This system is known to be unstable in the
mean-field approximation [7]. We however show here that
beyond mean-field effects lead to the stabilization of
droplets. Our investigations are aimed at probing strongly
dipolar Bose gases of 164Dy, which are characterized by a
dipolar length add ¼ μ0μ

2m=12πℏ2 ≃ 131a0, where a0 is
the Bohr radius with μ ¼ 9.93μB Dy’s magnetic dipole
moment in units of the Bohr magneton μB, ℏ the reduced
Planck constant, and m the atomic mass. The additional
short-range interaction of 164Dy, characterized by the
scattering length a has been the focus of several papers
[8–11], and the background scattering length was measured
to be abg ¼ 92ð8Þa0, modulated by many Feshbach

resonances. Thus, away from Feshbach resonances at the
mean-field level the dipolar interaction dominates with
εdd;bg ¼ add=abg ≃ 1.45. In a previous work [12], we
have reported the observation of an instability of a dipolar
Bose-Einstein condensate (BEC); the resulting state of this
instablity is characterized by the existence of apparent
droplets. These droplets cannot be explained by a stabili-
zation by one-body quantum pressure [13], and as such are
not solitons in the strict sense.
Here, we isolate these droplets to unravel their nature.

To perform our study systematically, we place them in a
waveguide. This relaxes their confinement in one direction
(along x) and thus suppresses the effect of dipolar repulsion
between the droplets. The waveguide is a single optical
dipole trap that creates a tight confinement around the
x axis with frequencies νy ¼ 123ð5Þ Hz, νz ¼ 100ð10Þ Hz.
The release in this waveguide is performed in the following
way (details of the ramping procedures can be found in
Ref. [14]): we create a BEC containing ∼10 × 103 atoms in
a crossed optical dipole trap at a magnetic field along the
vertical (z) axis BBEC ¼ 6.962ð10Þ G; we then lower the
field to B1 ¼ 6.656ð10Þ G in 1 ms, from which a wait time
of 15 ms follows. At B ¼ B1 [B ¼ BBEC] using abg ¼ 92a0
and our knowledge of the Feshbach resonances [14], we get
a ¼ 95ð13Þa0 [a ¼ 115ð20Þa0]. Then, one dipole trap is
turned off and the other one ramped-up to higher power in
1 ms. The trap has a too weak confinement to hold the
atoms in the x direction and the cloud starts moving. We
then image it as function of time in the waveguide tWG
using high-resolution (1 μm) imaging. We observe the
following, illustrated in Fig. 1. First, the condensed fraction
remains fragmented into up to six droplets and down to one
droplet. Some atoms originally in the BEC do not form
droplets; this fraction of atoms is hard to quantify since it is
hard to tell apart from a thermal fraction in our images.
Second, during the evolution time the initial confinement
energy is turned into relative kinetic energy and these
droplets move away from each other. We observe an in situ
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size limited by our resolution (Gaussian width σ ≃ 900 nm
roughly identical in the x and y directions), which does not
evolve during 20 ms. If we perform the same sequence but
keeping the field at BBEC, we observe that the BEC does not
separate into droplets and expands as a whole in the
waveguide; in 20 ms its axial size is increased by a factor
10 [Fig. 1(d), red diamonds]. At B ¼ B1, the number of
atoms in the droplets is N ¼ 800ð200Þ. The facts that a
single droplet appears to be stable and, when there are
several of them, that their size does not significantly
increase while their distance is multiplied by 4, indicates
that they are self-confining. Note that we also observe these
droplets on the low-field side of a resonance at B ¼ 1.2 G.
Since the confinement is too weak in the long direction to

observe droplets for longer times, we perform a second set
of experiments keeping a very weak confinement in the
x direction (νx ¼ 14.5ð1Þ Hz, see Ref. [14]); thus, the

trapping potential takes a prolate cigar shape still
perpendicular to ~B with an aspect ratio νy;z=νx ≃ 8. We
observe that in this trap, the droplets equilibrate at long
times t > 100 ms at an average relative distance
d ¼ 2.5ð5Þ μm, obtained from ten experimental realiza-
tions. Furthermore, when we first adiabatically load a BEC
in the prolate trap and then ramp from BBEC to B1, we
observe the same distance. This distance is smaller than the
length obtained by a simple analysis assuming pointlike
dipoles in a harmonic trap lx ¼ ð3Nμ0μ

2=2πmω2
xÞ1=5≃

4.5 μm, indicating that the droplets cannot be considered
as pointlike. With a more refined analysis developed in
Ref. [14] using a Gaussian ansatz with radial symmetry
around z for the density distribution inside a droplet, we
calculate the dipole-dipole repulsion. We thus obtain that a
distance of d¼2.5ð5Þ μm is obtained for elongated droplets
with σz¼2.5ð5Þ μm and a radial size σr≲500 nm. Finally,
we observe lifetimes of several hundreds of milliseconds,
similar to what we reported in Ref. [12], which confirm a
strong stabilization mechanism.
Given the strong elongation of the droplets along the

z direction, the dipolar interaction is mainly attractive and
since ϵdd ¼ add=a > 1 this attraction is stronger than the
short-range repulsion, such that overall the interactions are
mainly attractive. The droplets are thus expected to be
unstable at the mean-field level [20]. We observe that first
the gas locally collapses, before this collapse is arrested
at high densities finally forming droplets. This means that
the density dependence of the stabilizing mechanism is
stronger than that of the mean-field two-body interactions.
Importantly, our present work shows that this mechanism is
local and not due to any long-range effect between droplets.
Two works have postulated the existence of a three-body
conservative repulsion [21,22] with mean-field energy
density ∝ n3.
However, these works neglect beyond mean-field effects.

As stated above the energy density e for these effects is
e ∝ n5=2. This correction has been measured in contact-
interacting Bose gases [23,24]. Here, we must take both
contact repulsion and the DDI into account. Using the
results of Refs. [25–27] the beyond mean-field correction to
the chemical potential μ ¼ ð∂e=∂nÞ for a dipolar gas is
given by μbmf ≃ ð32gn=3 ffiffiffi

π
p Þ

ffiffiffiffiffiffiffiffi
na3

p
ð1þ 3

2
ϵ2ddÞ, where we

have taken the lowest order expansion of theQ5 function of
Ref. [27] since ϵdd is close to 1. Doing this we effectively
neglect the imaginary part, which is very small compared to
the real part, such that a long lifetime is still ensured,
though it is only in a metastable equilibrium. This beyond
mean-field term is to be compared with the mean-field
contact interaction contribution μc;mf and the DDI one
μdd;mf. Using a Thomas-Fermi approximation (which
neglects kinetic energy) for a droplet with a Gaussian
density distribution, the contribution at the center of the
droplet is μc;mf ¼ gn0 for the contact interaction where

(a)

(c)

(d)

(b)

FIG. 1. Quantum droplets of a dipolar Bose gas in a waveguide.
(a) Schematic representation of the droplets in the waveguide; the
elongation along z is represented; their separation d is indicated.
(b) Examples of in situ optical density (OD) images after release
in the waveguide at the magnetic field B1 ¼ 6.656ð10Þ G. Images
taken at times tWG ¼ 0, 5, 10, 15, 20 ms (top to bottom). The OD
is normalized to the maximal OD in each image to improve
visibility. (c) Evolution of the mean separation d between the
droplets as a function of time. (d) Blue circles: evolution of the
width σ obtained from a Gaussian fit to their density profiles
(average of transverse and axial radii). Red diamonds: evolution
of the size of a BEC for comparison. The data in panels (c) and (d)
are obtained by averaging at least four experimental realizations;
the error bars indicate the statistical standard deviation The
convention for the axes used through the Letter is indicated in
panel (a).
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g ¼ 4πℏ2a=m and n0 is the peak density. The dipolar
interaction contribution is μdd;mf ¼ −gn0ϵddfdipðκÞ [28]
with κ ¼ σr=σz; it thus depends on the elongation of the
droplet along the field direction through the function
fdipðκÞ, which can be found in Ref. [14]. Using an aspect
ratio equal to our experimental upper bound κ ¼ 0.2 one
has fdipðκÞ ¼ 0.83 such that the dipolar attraction domi-
nates the mean-field contributions for ϵdd≥1.2 or a≤ 110a0
[29]. The mechanical stability condition is ð∂μ=∂nÞ ≥ 0.
At the center in the Gaussian ansatz we get

∂μ
∂n

����
r¼0

¼ g

�
1 − ϵddfdipðκÞ þ 16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0a3=π

q �
1þ 3

2
ϵ2dd

��
;

ð1Þ

where n0 is the peak density. Note that if one assumes an
inverted-parabola density distribution, then one obtains the
same result [30]. We plot this function in Fig. 2 using a ¼
95ð13Þa0 and κ ¼ 1=10 [this κ value is a factor of 2 below
the experimental upper bound; it yields fdipðκÞ ¼ 0.94].
One can clearly see that since ϵdd is close to 1, though the
attraction dominates, the two mean-field contributions
nearly balance each other, which leads to a major role
for beyond mean-field effects, a very similar situation to the
one considered in Ref. [4]. From Eq. (1) one easily derives
that the central density stabilizes at the value

n0 ¼
π

a3

�
ϵddfdipðκÞ − 1

16ð1þ 3ϵ2dd=2Þ
�

2

; ð2Þ

thus, in our approximation, stability is reached at densities
n0 ≳ 1020 m−3. Equation (2) is striking because the central

density does not depend on atom number but only on a and
very weakly on κ [31], which is characteristic of a liquidlike
state. Neglecting quantum fluctuations and assuming a
three-body repulsion (μ3b;mf ¼ ℏκ3n2=2), this density
becomes n0 ¼ gðϵddfdipðκÞ − 1=ℏκ3Þ. Using parameters
from Ref. [22] (a ¼ 82.6a0, κ3 ¼ 5.87 × 10−39 m6=s) we
get n0 ¼ 17 × 1020 m−3, in very good agreement with full
simulation results [22]; at these densities, however, beyond
mean-field effects cannot be neglected. In addition such a
high value for κ3 is very hard to justify. It is very probable
that κ3, which is the real part of the three-body coupling
constant, lies close to its imaginary part, which is the
three-body recombination constant L3. Observing the
lifetime of the BECs, we have an upper bound
L3 ≲ 10−41 m6=s, which implies an experimentally irrel-
evant stabilizing density n0 > 1023 m−3. Our experimental
observations developed above imply a lower bound on the
central density n0 ≥ 1020 m−3; given our imaging resolu-
tion, we cannot observe smaller droplet radii and higher
densities. For a better estimate of the density, we turn to
expansion experiments.
The mechanisms at work in the droplets can indeed be

further explored by observing their time-of flight expansion
in free space. In principle, pure liquid droplets in the
absence of trapping should reach an equilibrium with an
absence of growth [4,21]. On the other hand, time-of-flight
expansion under a dipolar interaction is nontrivial but well
studied [32,33], and it is modified by beyond mean-field
effects [27]; these effects are isotropic and counteract
magnetostriction. Mean-field hydrodynamic equations
could not describe the expansion of our droplets. In our
experiment, we perform such measurements by turning off
the waveguide trap after 4 ms. In order to keep the atoms
at the focal position of our imaging system, we apply a
magnetic field gradient that compensates gravity, and
image the atoms at various times after release, Figs. 4(a)
and 4(b). We record thus the size in the x and y direction
as a function of time. The sizes undergo a linear growth
with rates _σx ¼ 0.17ð3Þ μm=ms, _σy ¼ 0.24ð3Þ μm=ms [14].
We qualitatively express the expansion dynamics in terms
of the released energy Ei ¼ 1

2
m _σ2i [34]; we get Ey ¼

0.09ð1Þℏωy, Ex ¼ 0.045ð4Þℏωy. Such energies are remark-
ably low, which demonstrates that kinetic energy plays only
a marginal role, as expected; however, a full theory is
presently not available to describe the free-space dynamics
after release.
To circumvent the absence of a model for free-space

dynamics, we perform a new set of experiments. It consists
of the same procedure, but at the time of release, the
magnetic field is quenched (in 50 μs) from B1 to a higher
value BToF inducing a change in scattering length
Δa ¼ aðBToFÞ − aðB1Þ, while the DDI remains unchanged.
In this case, the expansion rate is strongly increased. Given
the quench time, the initial density does not have time to

FIG. 2. Derivative of the chemical potential with respect to
density as a function of density, at the center of a droplet using a
Gaussian ansatz (1) (g ¼ 4πℏ2a=m). The blue shaded region
expresses our uncertainty on the scattering length. Negative
values imply mechanical instability. The experimental value
obtained from expansion measurements (Fig. 4) is shown as a
red circle assuming a Gaussian distribution and as an orange
square assuming an inverted parabola. The dashed line shows
the same quantity obtained using a three-body repulsion using
parameters from Ref. [22], which stabilizes at a higher density.
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adapt to the interaction quench. One thus expects that the
change in released energy is given by ΔE≃ 1

N

R
d~r Δg

2
n2 ¼

Δgn0=4
ffiffiffi
2

p
, where we have used again a Gaussian ansatz,

and Δg ¼ 4πℏ2Δa=m. Since we are dealing with the
difference in total energy here, the variation of the beyond
mean-field corrections is negligible. Thus, since ΔaðBÞ is
known, we can extract a value for n0 from the observed
change in ΔE. From these measurements detailed in
Ref. [14], given our uncertainty on aðBÞ we obtain
n0 ¼ 4.9ð2.0Þ × 1020 m−3. If instead of the Gaussian
ansatz we use an inverted parabola, then we get ΔE ¼
2Δgn0=7, from which we obtain n0¼3.0ð1.5Þ×1020m−3.
Both values are compatible with the lower bound extracted
from in situ imaging; we represent them in Fig. 2. The
measured density is thus in agreement with the stabilizing
density due to quantum fluctuations.
However, this does not probe the scaling behavior of

the density as a function of a. As evident in Eq. (2), this
scaling is very strong. In turn, three-body recombination in
the droplets scales very strongly with a; indeed, since the
density does not depend on atom number, three-body losses
lead to an exponential decay with a lifetime τ ¼ 1=L3hn2i
[14]. In particular, τ decreases when a decreases. To cancel
the uncertainties on L3 and on the exact density distribution
one simply needs to measure the ratio in lifetime τf=τi
between two different scattering lengths or magnetic fields
Bi and Bf, which, assuming a constant L3, is simply given
by τf=τi ¼ ðhn2i i=hn2fiÞ ¼ ðn20;i=n20;fÞ. One can easily show
that for a fixed κ this ratio is a function of only two
parameters ½ðaf=aiÞ; ðadd=aiÞ�; in particular assuming
three-body repulsion, it is independent of κ3; we give this
function in Ref. [14]. Thus, using a fixed ai ¼ 94ð12Þa0
[Bi ¼ 6.573ð5Þ G], in Fig. 3 we represent τf=τi vs af=ai.
This figure is striking; while we vary the scattering length

by less than 10%, the lifetime is divided by a factor of 5.
Furthermore, the data points are incompatible with the
scaling predicted by three-body repulsion while without
any fit parameter they follow the scaling predicted using
quantum fluctuation within the experimental uncertainties.
The small deviation to lower lifetimes can be accounted for
by a weak variation of L3 [35]. This demonstrates unam-
biguously that quantum fluctuations constitute the stabiliz-
ing mechanism. The conclusion we drew here is reinforced
by numerical simulations reported in [36] of which we
have recently become aware. Finally, we observe that the
droplets have internal phase coherence. Indeed, for “fast”
expansion dynamics obtained when quenching B during
the time of flight, the size of the expanding droplets
becomes comparable to or larger than their relative
distance so that neighboring ones overlap. In this case
we observe matter-wave interference fringes as exemplified
in Figs. 4(c) and 4(d). The presence of these fringes
demonstrates that each droplet individually is phase coher-
ent and thus superfluid. Their observation opens the door
to studies of the relative phase coherence between droplets.
In the present case we do not observe fringe patterns that
allow us to measure the droplets’ relative phase, but this is
mainly due to shot-to-shot noise in the in situ position and
the relative spacing of the droplets since we are not yet in
the far-field regime. Future studies with fixed in situ
conditions prior to the time of flight could bring insight
into the phase coherence of an ensemble of droplets, even
in the case of a high number of them [37]. Our measure-
ments reported here have established the existence of a
novel system forming droplets stabilized by quantum
fluctuations. These results open prospects of forming pure
liquid droplets of a quantum gas in free space characterized
by a total absence of growth.

We acknowledge insightful discussions with L. Santos
and D. Petrov as well as with H. P Büchler, A. Pelster,

FIG. 3. Ratio of the lifetime τf=τi of the droplets between
scattering lengths af and ai. We use here ai ¼ 94ð12Þa0 obtained
at Bi ¼ 6.573ð5Þ G. The data points are taken down to
Bf ¼ 6.159ð5Þ G. The filled blue and green hatched areas
represent the expected scaling using quantum fluctuations
and three-body repulsion, respectively, taking into account the
uncertainty range on the droplets’ aspect ratio: 0 ≤ κ ≤ 0.2.

(a) (c)

(b) (d)

FIG. 4. Time-of-flight expansion measurements. The field is
held at B1 ¼ 6.656ð10Þ G until release when it is quenched to a
different value. (a),(b) Images where the field is kept at B1 during
expansion and (c),(d) quenched to 6.86 G. In (a) and (b) one sees
expanding droplets, whereas in (c) and (d) they overlap and clear
interference fringes appear along the x axis while we can still
measure the expansion size in the y direction.
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