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We explore a prototypical two-dimensional massive model of the nonlinear Dirac type and examine its
solitary wave and vortex solutions. In addition to identifying the stationary states, we provide a systematic
spectral stability analysis, illustrating the potential of spinor solutions to be neutrally stable in a wide
parametric interval of frequencies. Solutions of higher vorticity are generically unstable and split into lower
charge vortices in a way that preserves the total vorticity. These conclusions are found not to be restricted to
the case of cubic two-dimensional nonlinearities but are found to be extended to the case of quintic
nonlinearity, as well as to that of three spatial dimensions. Our results also reveal nontrivial differences with
respect to the better understood nonrelativistic analogue of the model, namely the nonlinear Schrodinger

equation.
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Introduction.—In the context of dispersive nonlinear wave
equations, admittedly the prototypical model that has
attracted a wide range of attention in optics, atomic physics,
fluid mechanics, condensed matter, and mathematical
physics is the nonlinear Schrodinger equation (NLS)
[1-7]. By comparison, far less attention has been paid to
its relativistic analogue, the nonlinear Dirac equation (NLD)
[8], despite its presence for almost 80 years in the context of
high-energy physics [9-13]. This trend is slowly starting to
change, arguably, for three principal reasons. Firstly, signifi-
cant steps have been taken in the nonlinear analysis of stability
of such models [14-19], especially in the one-dimensional
setting. Secondly, computational advances have enabled a
better understanding of the associated solutions and their
dynamics [20-24]. Thirdly, and perhaps most importantly,
NLD starts emerging in physical systems that arise in a
diverse set of contexts of considerable interest. These contexts
include, in particular, bosonic evolution in honeycomb
lattices [25,26] and a growing class of atomically thin 2D
Dirac materials [27], such as graphene, silicene, germanene,
and transition metal dichalcogenides [28] (notice that in this
Letter, we use nD to refer to n spatial dimensions). Recently,
the physical aspects of nonlinear optics, such as light
propagation in honeycomb photorefractive lattices (the so-
called photonic graphene) [29,30], have prompted the con-
sideration of intriguing dynamical features, e.g., conical
diffraction in 2D honeycomb lattices [31]. Inclusion of
nonlinearity is then quite natural in these models, although
in a number of them (e.g., in atomic and optical physics) the
nonlinearity does not couple the spinor components.
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These physical aspects have also led to a discussion of
potential 2D solutions of NLD in Refs. [25,26]. However, a
systematic and definitive characterization of stability and
nonlinear dynamical evolution of the prototypical coherent
structures in NLD models is still lacking, to the best of our
knowledge. The present work is dedicated to offering
analytical and numerical insights into these crucial math-
ematical and physical aspects of higher-dimensional non-
linear Dirac equations bearing in mind the physical
relevance and potential observability of such waveforms.
As our model of choice, in order to also be able to compare
and contrast with the multitude of existing 1D results (e.g.,
Refs. [18,23]), we select the well-established Soler model
[32] (known in 1D as the Gross-Neveu model [33]), which
is a Dirac equation with scalar self-interaction. Such self-
interaction is based on including into the Lagrangian
density a function of the quantity yy (which transforms
as a scalar under the Lorentz transformations):

Lsger = W(ip D =mw + 3Gy (1)
where m >0, g> 0, y(x,1) €CY, x€R" and y,, 0 <
u < n are N x N Dirac y matrices satisfying the anticom-
mutation relations {y#, y*} = 2", with #** the Minkowski
tensor [34], and = w*y°. [The Clifford algebra theory
gives the relation N > 2[("+1)/2] between the spatial dimen-
sion and spinor components (Ref. [35], Chap. 1, Sec. 5.3).]
The nonlinearity of the model is generalized in the spirit
of Ref. [22] by using g(y ) /(k + 1), with k € N. The
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proof of existence of solitary waves in this model (in 3D) is
in Refs. [36-38].

Our results show that the NLD in 2D admits different
solutions involving a structure of vorticity S € Z in the
first spinor component, with the other spinor component
bearing a vorticity S + 1. We identify such solutions for
S =0,1,.... While prior stability results have often been
inconclusive (particularly in higher dimensions; see, e.g.,
Ref. [39]), our numerical computation of the spectrum of
the corresponding linearization operator reveals that only
the § = 0 solutions can be spectrally stable (the spectrum
of the linearization contains no eigenvalues with positive
real part), and that this stability takes place in a rather wide
interval of the frequency of the solitary waves. On the
contrary, we find that the states of higher vorticity are
generically linearly unstable. Complementing the stability
analysis results, our direct dynamical evolution studies
show that the unstable higher vorticity solutions break up
into lower vorticity waveforms, yet conserving the total
vorticity. Importantly, the fundamental S = O solutions are
found to be potentially stable in models both with a higher
order (quintic) two-dimensional nonlinearity, as well as in
higher dimensions (3D) with cubic nonlinearity. These
features again reflect differences from the NLS model and
as such suggest the particular interest towards a broader and
deeper study of NLD models.

An important extension of our stability findings for
higher-dimensional S = 0 solutions is that they remain
valid for other types of nonlinearities. These include
non-Lorentz-invariant ones, such as most notably those
arising in atomic [25,26] and optical [29,30] problems.
The fundamental difference of those models is that they
correspond to massless equations, contrary to the Soler
model. For this reason, we have confirmed our stability
conclusions by comparison with those emerging from the
model for square binary waveguides [40], which leads
to a massive nonlinear Dirac equation with the same
nonlinearity as in Refs. [25,26].

Theoretical setup.—We start from the prototypical
2D nonlinear Dirac equation system, derived from the
Lagrangian density Eq. (1) with k€N and m =g = 1:

0y, = —(i0, + 0))yr + f(Py)y1,

0y = —(i0, — O,y — f(Py)wa, (2)
where w,, w, are the components of the spinor
w € C? and the nonlinearity is f(jpy) = 1— () =
1= (Jy1|? = |[w2)?)*. We note that Eq. (2) is a U(1)-
invariant, translation-invariant Hamiltonian system.

We simplify our analysis by using the polar coordinates,
where Eq. (2) takes the form

: of 0
latl//l - _e_le (lar + 79> "6 + f(l//l s WZ)W] s

. ol . 0,
i0y, = —e (18, - 79> w1 = fw,v2)ws. (3)

The form of this equation suggests that we look for
solutions as y (7, 1) = exp(—iwt)p(7), with

vmwG}

l-u(r)ei(SH)e

)= | @
with v(r) and u(r) real valued. The value S € Z represents
the vorticity of the first spinor component.

Once solitary waves have been identified, we explore
their stability. This approach has been previously developed
in related settings including the multicomponent NLS
(see, e.g., Ref. [41]), as well as a massless variant of the
Dirac equation of Ref. [42]. The presence of a mass in our
case allows not only a direct comparison with NLS (when
@ — m = 1), but also generates fundamental differences
between our results and those of Refs. [25,26,42], as
discussed below as well.

To examine its spectral stability, we consider a solution y
in the form of a perturbed solitary wave solution:

L[ ) +pi(r0,0))e0 7
W“”_i@m+mmamﬂﬂwe - O

with p = (p;,p,)T € C? a small perturbation. We consider
the linearized equation on p,

8tR = AmRv (6)

with R(r,0,1) = (Rep,Imp)” € R*, and with a matrix-
valued first order differential operator A, (r, 0, 0,, 9g) [43].
If the spectrum of the linearization operator A, contains
an eigenvalue 1 € o(A,) with Red > 0, we say that the
solitary wave is linearly unstable; in such cases, we resort
to dynamical simulations of Eq. (2) to explore the outcome
of the unstable evolution. If there are no such eigenvalues,
the solitary wave is called spectrally stable.

A convenient feature of NLS ground states is that the
linearization operator at such states, albeit non-self-adjoint,
has its point spectrum confined to the real and imaginary
axes. This observation is at the base of the Vakhitov-
Kolokolov criterion [48]. A linear instability can develop
when a positive eigenvalue bifurcates from 4 = 0. For the
ground state, the loss of stability due to the appearance of a
pair of positive and a pair of negative eigenvalues follows
the jump in size of the Jordan block corresponding to the
unitary invariance. This happens when the Vakhitov-
Kolokolov condition 9,,Q(w) = 0 is satisfied, with Q(®)
being the charge of a solitary wave.

Crucially, in the NLD case, the spectrum of the lineari-
zation at a solitary wave is no longer confined to the
real and imaginary axes; the linear stability analysis
requires that one studies the whole complex plane. The
key observation is that A, in Eq. (6) contains r, 0,, Jy, but
not #; this allows us to perform a detailed study of the
spectrum of A, using the decomposition of spinors into
Fourier harmonics corresponding to different g € Z [43].
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FIG. 1. Radial profiles of the spinor components for (left) S = 0
solitary waves and (right) S = 1 vortices for different values of .

In the 3D case, we are not yet able to perform the general
spectral analysis. However, we studied the part of spectrum
in the invariant subspace corresponding to perturbations
of the same angular structure as the solitary waves [49],
[v(r)[1,0], iu(r)[cos 0, e sin 9]]"; this invariant subspace
is important since it is responsible for the linear instability
in the nonrelativistic limit @ — 1, which is a consequence
of the instability of the 3D cubic NLS.

Numerical results.—We have analyzed the existence and
stability of solitary waves (S = 0, with its first component
radially symmetric and the second component having
vorticity 1) and vortex solutions (S = 1, with its compo-
nents having vortices of order one and two, respectively).
Both solitary waves and vortex solutions exist in the
frequency interval @ € (0,m = 1), a feature critically
distinguishing our models from those of Refs. [25,26].
An intriguing feature of the relevant waveforms is that both
the radial profile of the solitary waves and that of the
vortices possess a maximum that shifts from r =0 to a
larger r when @ approaches zero (see Fig. 1), in a way
reminiscent of the corresponding 1D solitary wave struc-
tures [22]. Here the relevant state will feature a stationary
bright intensity ring. In order to obtain and analyze such
coherent structures, we have made use of the numerical
methods detailed in Ref. [43]. To confirm the results, we
also computed the spectra using the Evans function
approach of Ref. [23] adapted to the present problem.

We start by considering the stability of S = 0 solitary
waves in the cubic (k= 1) case. Figure 2 shows the
dependence of the real and imaginary parts of the eigen-
values with respect to the stationary solution frequency .
From the spectral dependencies we can deduce several
features of the 2D NLD equation. (1) It is known that the
2D NLS equation is charge critical, and the zero eigen-
values are degenerate [6]: they have higher algebraic
multiplicity. In the NLD case, however, this degeneracy
is resolved: in the S = 0 case, as w starts decreasing, two
eigenvalues (corresponding to g = 0) start at the origin
when @ =1 and move out of the origin for @ < 1. The
absence of the algebraic degeneracy of the zero eigenvalue
prevents solitary waves from NLS-like self-similar blowup,
which is possible in charge-critical NLS [50]. (2) The U(1)
symmetry and the translation symmetry of the model result
in zero eigenvalues with ¢ = 0 and |g| = 1, respectively
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FIG. 2. 2D Soler model with cubic (k= 1) nonlinearity.
Dependence of the (top) imaginary and (bottom) real part of
the eigenvalues with respect to @. Left (right) panels correspond
to § = 0 solitary waves (S = 1 vortices). For the sake of clarity,
we only included the values |g| < 2 for the imaginary part and
|g| < 4 for the real part. In the former case, the imaginary part of
the eigenvalues for ¢ = 0, ¢ = £1, and ¢ = +2 is represented by,
respectively, blue, red, and black lines.

(in both § =0 and S = 1 cases). (3) As in the 1D NLD
equation, there are also the eigenvalues 1 = £2wi, which
are associated with the SU(1, 1) symmetry of the model
[51]. This eigenvalue pair corresponds to ¢ = F(25 + 1),
i.e., to a highly excited linearization eigenstate. (4) Contrary
to the 1D case, where the solitary waves corresponding to
any @ < 1 are spectrally stable, the S = 0 solitary wave is
linearly unstable for @ < 0.121 because of the emergence of
nonzero real part eigenvalues via a Hamiltonian Hopf
bifurcation in the |g| =2 spectrum at o = 0.121.
Another Hopf bifurcation occurs corresponding to |g| = 3
(at @ = 0.0885), then yet another one corresponding
to |q| = 4.

It is especially interesting that a wide parametric (over
frequencies) interval of stability of solitary waves can also
be observed in the quintic (k = 2) NLD case (see Fig. 3);
while the quintic NLS solitary waves blow up (even in one
dimension), the quintic NLD solitary waves are stable even
in two dimensions, except for the interval w < 0.312,
where the coherent structures experience the same Hopf
bifurcation as in the cubic case, and for @ > 0.890, where
an exponential instability created by radial ¢ = 0 pertur-
bations emerges. Perhaps even more remarkably, the right-
hand panel of Fig. 3 illustrates that this stability of NLD
solitons against radial perturbations can be found in
suitable frequency intervals even in 3D (see Ref. [52]
for a discussion of the equations for existence and stability
of radial perturbations in 3D). Both of the above cases
(quintic 2D and cubic 3D NLD) are charge supercritical;
i.e., the charge goes to infinity in the nonrelativistic
limit @ — m. Contrary to the pure-power supercritical
NLS whose solitary waves remain linearly unstable for
all frequencies, solitary waves in the Soler model
become spectrally stable when @ drops below some
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FIG. 3. Left: Solitary waves in the 2D Soler model with quintic
(k = 2) nonlinearity. Dependence of the (top) imaginary and
(bottom) real part of the eigenvalues with respect to @ in the same
format as the previous figure. Right: Solitary waves in the 3D
Soler model with cubic (k = 1) nonlinearity. Spectrum of the
linearization in the one-dimensional invariant (¢ = 0) subspace,
which contains the eigenvalue that is responsible for the insta-
bility for w € (w,, 1), with @, ~ 0.936.

dimension-dependent critical value, .= w.(n,k) (not
shown here). The relevant unstable eigenvalue (associated
with ¢ = 0 and radially symmetric collapse) is only present
as real for w € (w.,1), where w.~0.936. This was
identified in Ref. [32] as the value at which both the
energy and charge of solitary waves have a minimum.
Hence, we indeed find that the radially symmetric collapse-
related instability ceases to be present below this critical
point. Finally, as regards two dimensions, S = 1 vortices
are unstable for every w, because of the presence in the
spectrum of quadruplets of complex eigenvalues. These
quadruplets emerge (and disappear) for different values of
q via direct (inverse) Hopf bifurcations; see the right-hand
panel of Fig. 2. The spectrum for § =2 vortex is quite
similar to that of S = 1; for this reason, we do not analyze it
further.

In order to analyze the result of instabilities in 2D
settings, we have probed the dynamics of unstable solutions
directly (see Ref. [43] for details). Prototypical examples of
unstable S = 0 solitary waves and § = 1 vortices for k = 1
are shown in Figs. 4 and 5. As can be observed, the § = 0
solitary waves spontaneously amplify perturbations break-
ing the radial symmetry in their density and, as a result,
become elliptical and rotate around the center of the
circular density of the original solitary wave in line with
the expected amplification of the g =2 unstable eigen-
mode. On the other hand, the S = 1 vortices split into three
smaller ones. Let us mention that in the latter case, the first
spinor component splits into structures without angular
dependence, whereas the second component splits into
corresponding ones with angular dependence « e, in
accordance with the ansatz of Eq. (4). This preserves the
total vorticity across the two components, as is also shown
in Fig. 5. Along a similar vein, the instability of an S =2
vortex eventually leads to the emergence of five (0,1) pairs,

—10 10 —10

O
O 0

FIG. 4. Snapshots showing the evolution of the density of an
unstable S = 0 solitary wave with @ = 0.12. The soliton which
initially had a circular shape becomes elliptical and rotates around
the center of the original solitary wave.

10 —10 10

10.

10 —10 10 —10

again preserving the total vorticity. Finally, we have
analyzed the outcome of the instabilities caused by radially
symmetric perturbations in the k =2 case for o > w,
(see Fig. 5). We can observe the typical behavior of such
solutions; i.e., the density width (and amplitude) oscillate
leading to a “breathing” structure, but there is no collapse.
This phenomenology is reminiscent of the 1D case [53].

Conclusions and future challenges.—We have illustrated
that solitary waves of vorticity S = 0 in one spinor compo-
nent and S = 1 in the other are spectrally stable within a
large parametric interval, suggesting their physical rel-
evance. In that connection, we highlight that although our
models of choice may bear a particular nonlinearity, our
results suggest that under different nonlinearities including
the more physically relevant ones of, e.g., Refs. [25,26] and
massive models [40], they still bear stable solitary waves for
a suitable wide parametric range of frequencies. Thus, the
conclusion of higher-dimensional stability is more general
than the specifics of our particular nonlinearity and hence of
broad interest. We also showcased the significant difference
of NLD from the focusing NLS equation, where solitary
waves are linearly unstable in the charge-supercritical cases.
When the NLD solutions were found to be unstable, their
dynamical evolution suggested breathing oscillations in the
S = O case and splitting into lower charge configurations for
S=1land S =2

It is of interest to extend present considerations to
numerous settings. From a mathematical physics perspec-
tive, it would be useful to explore further the 3D stability
and associated dynamics. This is especially timely given
that the 3D analogue of photonic graphene has been
experimentally realized very recently [54]. Admittedly,

20 2
10 10
20 > 0 1
10 -10 -~ >0 0
0 0
201 50 20 50 11 0

10 010 wot 20 0 o0 100t 101 150 t
X

FIG. 5. Isosurfaces for the density of an § = 1 (left) and § = 2
(center) vortex with k = 1, @ = 0.6 and (right) an S = 0 solitary
wave with k = 2 and w = 0.94.

214101-4



PRL 116, 214101 (2016)

PHYSICAL REVIEW LETTERS

week ending
27 MAY 2016

the latter setting does not feature a mass in the model; thus,
the generalization of NLD models such as those appearing
in the works of Refs. [25,26,42] would be particularly
important there. It would also be of interest to compare
more systematically the present findings with models
associated with different nonlinearities, including the case
of honeycomb lattices in atomic and optical media or, e.g.,
those stemming from wave resonances in low-contrast
photonic crystals [55].
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