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We propose a nonperturbative gauge-invariant regulator for d-dimensional chiral gauge theories on the
lattice. The method involves simulating domain wall fermions in dþ 1 dimensions with quantum gauge
fields that reside on one d-dimensional surface and are extended into the bulk via gradient flow. The result
is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields
via a form factor that becomes exponentially soft with the separation between domain walls. The resultant
theory has a local d-dimensional interpretation only if the chiral fermion representation is anomaly free. A
physical realization of this construction would imply the existence of mirror fermions in the standard model
that are invisible except for interactions induced by vacuum topology, and which could gravitate differently
than conventional matter.
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Introduction.—There is a fundamental tension between
taming the ultraviolet behavior of a chiral gauge theory and
maintaining gauge invariance. There is no perturbative
regulator known to work to all orders, and constructing a
nonperturbative lattice regulator for chiral gauge theories in
d ¼ 2, 4 dimensions has been a daunting problem for
decades [1]. This is of particular interest since the standard
model is a chiral gauge theory. The lack of a regulator may
be a purely technical problem, but it might indicate that
something is missing from the standard model. Naive
lattice fermions are always Dirac in structure, leading to
unwanted mirror fermions; in the case of chiral gauge
theories, decoupling these mirror fermions by means of a
large mass would entail explicitly breaking the gauge
symmetry. Attempts to solve the problem generally fall
into three classes: (i) the gauge symmetry is broken
spontaneously [2] or explicitly [3] and mirror fermions
are decoupled from the gauge fields, with a procedure to
recover gauge symmetry in the continuum large-volume
limit, (ii) the mirror fermions are given exotic gauge-
invariant strong interactions intended to induce a mass gap
in that sector [4–9], or (iii) the mirror fermions are
projected out of the theory [10,11]. In the first category,
the spontaneous breaking of gauge symmetry fails to yield
a chiral fermion spectrum [12], while to date the explicit
breaking approach has only been shown to recover con-
tinuum gauge invariance in perturbation theory. The strat-
egy of decoupling mirror fermions via exotic interactions is
a nontrivial dynamical question. In [13] the gauge fields
were given space-dependent couplings, but it is thought
that the construction is unlikely to have a continuum limit
[14]. Certain other cases of exotic interactions have been
closely examined and do not appear to possess the expected
mass gap [15–17]. In the third category, where mirror
fermions are projected out, one must show that the resulting
fermion contribution to the gauge measure is analytic in the

gauge fields and can be derived from a local fermion action.
Examples in this category include the ansatz [10] based on
overlap fermions [18] which is analytic, but not obviously
derivable from a local fermion action, and the work of
Ref. [11] which starts from the chirally projected overlap
operator [19] and provides an implicit construction of a
local and analytic measure in the case of Uð1Þ gauge
symmetry, but which has not been generalized to non-
Abelian gauge symmetries. Any nonperturbative solution is
expected to agree with low order perturbation theory,
including a path to failure for the case of anomalous
fermion representations, and so this will be our criteria
for a successful nonperturbative regulator.
The problem of how to realize global chiral symmetries

on the lattice with the correct anomalies was resolved in
Ref. [13]. In this construction Dirac fermions in 2nþ 1
dimensions are introduced; the theory possesses a mass gap
in the bulk and massless chiral modes localized on the
“domain walls,” which are the 2n-dimensional surfaces of
the space. The number of such modes is a topological
invariant of the bulk fermion dispersion relation [20]
and the theory is an example of what condensed matter
physicists currently refer to as a topological insulator.
Chiral symmetry becomes exact in the limit of infinite
extra dimension, in which case the effective 2n-
dimensional description of these modes is the overlap
fermion [18,19]. The geometry of domain wall fermions
naturally suggests that by localizing gauge interactions near
one surface of the extra dimension one might obtain a
continuum chiral gauge theory while mirror fermions on
the distant surface decouple; this has been a starting point
for many of the attempts to construct chiral gauge theories
cited above. There is some reason to be optimistic about a
solution involving an extra dimension [21], even though
particular dynamical realizations have not been successful.
In this Letter we propose a gauge-invariant solution based
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on domain wall fermions that works on a new principle:
gauge fields are extended into the extra dimension via
“gradient flow,” as solutions to a gauge covariant parabolic
differential equation. The effect is that the mirror fermions
are endowed with nonlocal but gauge-invariant couplings
which allow them to decouple in perturbation theory,
leaving behind a local d-dimensional chiral gauge theory
in the infrared when (and only when) the theory is gauge
anomaly free. A striking feature of this proposal is that even
in the anomaly-free case the mirror fermions are still
sensitive to topological features of the gauge field and
can therefore have nonlocal and nonperturbative inter-
actions with ordinary matter. For all we know, such
interactions could be a necessary intrinsic feature of
non-Abelian chiral gauge theories, implying exotic and
yet to be discovered phenomenology in the standard model
that is not apparent in Feynman diagrams.
Definition of the chiral measure.—Euclidean Green

functions in a gauge theory can be expressed as path
integral averages of functionals of gauge fields with respect
to a measure e−SðAÞΔðAÞ where S is the Maxwell or Yang-
Mills action and Δ is the fermion contribution to the
measure. In a vectorlike gauge theory Δ is just given by a
product of one determinant of the Dirac operator for each
fermion flavor; in a chiral gauge theory jΔj2 must equal a
product of Dirac determinants, but the problem is how to
define the phase of Δ such that it is analytic in Aμ and
follows from a local fermion action. It is known that if the
fermion representation is in an anomalous representation of
the gauge symmetry, this phase will be gauge variant and
the theory ill defined. Our proposal for Δ for a single Weyl
fermion in the continuum with dimension d ¼ 2, 4 is

ΔðAÞ ¼ det ½DðRÞ
dþ1 − ΛϵðsÞ�

det ½DðRÞ
dþ1 − Λ�

: ð1Þ

In this expression DðRÞ
dþ1 is the (dþ 1)-dimensional Dirac

operator in the gauge group representation R for the
fermion, where the extra dimension denoted by coordinate
s ∈ ½−L;L� is a circle with circumference 2L, ϵðsÞ ¼
sgnðsÞ, and Λ is a real mass scale whose sign is the
fermion chirality. The scale jΛj can be thought of as the
ultraviolet cutoff of the theory and will be equated with
the inverse lattice spacing in a discretized version of the
theory, with jΛjL → ∞.
So far our expression for Δ would just seem to describe

the determinants of a normal domain wall fermion, with
zeromodes of chirality ∓sgnðΛÞ localized on the
mass defects at s ¼ 0 and s ¼ �L, respectively, with a
Pauli-Villars field of constant mass Λ which cancels off
unwanted effects of the heavy bulk fermions. What differs in
the present formulation is the gauge field in Ddþ1. In the
usual application of domain wall fermions to lattice
QCD the d-dimensional gauge fields are independent of
the coordinate s. In contrast we specify here an s-dependent,

d-dimensional gauge field Āμðx; sÞ solving the gradient flow
equation

∂sĀν ¼
ξϵðsÞ
jΛj DμF̄μν; μ; ν ¼ 1;…; d; ð2Þ

with boundary condition Āμðx; 0Þ ¼ AμðxÞ, where AμðxÞ is
the integration variable in the path integral. In the above
equation Dμ and F̄μν are the covariant derivative and Yang-
Mills (or Maxwell) field strength, respectively, constructed
out of Āμðx; sÞ, where the indices run to d, not dþ 1. The
parameter ξ is dimensionless and can be set to unity for
applications, but it is useful for our discussion to keep
its value general, allowing us to interpolate between the
conventional application of domain wall fermions with
ξ ¼ 0 and s-independent gauge fields, and the case ξ≳ 1
where the gauge flow is rapid. Note that Eq. (2) is covariant
under s-independent gauge transformations and has fixed
points at solutions to the classical Yang-Mills (Maxwell)
equations of motion. When linearized for small fluctuations
about a stable classical solution it behaves like the heat
equation, damping out the fluctuations away from s ¼ 0. An
analogue called Ricci flow was introduced by mathemati-
cians over 50 years ago to smooth out metric fields while
preserving diffeomorphism invariance [22–24] and was
subsequently applied to gauge fields [25]. The extension
to quantum field theory employed here was developed in
Refs. [26–28], with precursors in Refs. [29,30], and has
found a variety of useful applications in lattice QCD (see for
example [31–33]).
The effect of the flow equation (2) is illustrated by

considering a Uð1Þ gauge field in two Euclidean spacetime
dimensions, flowing into a third dimension. We can
decompose Aμ as

Aμ ¼ ∂μωþ ϵμν∂νλ; ð3Þ
and extend ω, λ to ω̄, λ̄ with boundary conditions
ω̄ðp; sÞjs¼0 ¼ ωðpÞ, λ̄ðp; sÞjs¼0 ¼ λðpÞ and solutions

ω̄ðp; sÞ ¼ ωðpÞ; λ̄ðp; sÞ ¼ e−ξp
2jsj=ΛλðpÞ: ð4Þ

Evidently the gauge degree of freedom ω̄ is constant over
the entire extra dimension and can interact with the
zeromodes at either domain wall if their individual gauge
currents are not conserved, while the physical gauge field
λ̄—which is invariant under gauge transformations—
interacts at full strength with the chiral zeromodes at s ¼ 0,
but interacts with the mirror fermions at s ¼ �L with a
Gaussian damping factor expð−p2=μ2Þ, where μ≡ffiffiffiffiffiffiffiffiffiffiffi
Λ=ξL

p
is an IR scale with μ=Λ → 0 as L → ∞.

It is helpful to regard this damping factor not as a
property of the gauge field, but rather as a property of the
fermions which behave as large objects with a Gaussian
form factor, incapable of reacting to gauge bosons attempt-
ing to transfer momentum p ≫ μ. In fact, if there is an
infrared cutoff on the d-dimensional space so that all gauge
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boson modes satisfy p ≫ μ, where μ can be made arbi-
trarily small, then in the appropriate sequence of limits of
vanishing μ and infinite volume, the mirror fermions can be
made to decouple from the physical gauge field plane
waves completely. We will refer to the mirror fermions as
“fluff” because of their soft form factor [34].
Even if we decouple the fluff, we still must ask whether

the fermions in the bulk make contributions to the action
which do not look d-dimensional. Naively it would seem
that the heavy bulk fermions and Pauli-Villars fields would
decouple, only contributing local operators to the effective
action suppressed by powers of their mass Λ, but that is
incorrect; we know from the analysis of Callan and Harvey
[35] that these modes generate a Chern-Simons term when
integrated out, a marginal operator that depends on the sign
of Λ but not its magnitude. This operator in the presence of
an arbitrary ðdþ 1Þ-dimensional background gauge field
Āμ is, for ðdþ 1Þ ¼ 3, 5,

Sbulk3 ¼ c3
Λ
jΛj

Z
½ϵðsÞ − 1�Tr

�
F̄ Ā−

1

3
Ā3

�
;

Sbulk5 ¼ c5
Λ
jΛj

Z
½ϵðsÞ − 1�

× Tr

�
F̄2Ā −

1

2
F̄Ā3 þ 1

10
Ā5

�
; ð5Þ

where we are using p-form notation with Ā ¼ Āa
μTadxμ,

F̄ ¼ dĀþ Ā2, μ ¼ 1;…; dþ 1, and

c2nþ1 ¼
in

2nþ1πnðnþ 1Þ! ; ð6Þ

and our convention for γ matrices is Trγ1 � � � γ2nþ1 ¼ ðiÞn.
We now restrict these gauge fields Āμ to the solution of
Eq. (2), with vanishing component in the dþ 1 direction, in
which case only terms that involve one derivative with
respect to s contribute to the above expression. Note that as
ð−sgnΛÞ is the chirality of the zeromode at s ¼ 0 and Ta

are generators in the same representation of the gauge
group as the zeromode, the sum of contributions to Sdþ1

will cancel under the same algebraic condition as the
vanishing of the d-dimensional gauge anomaly among
the zeromodes at s ¼ 0.
The variation of the above operators under gauge trans-

formations are total derivatives with respect to s, and
integration over s yields the consistent anomaly on the
surfaces s ¼ 0 and s ¼ L after integration by parts, using
the fact that ∂sϵðsÞ ¼ 2½δðsÞ − δðs − LÞ�. In particular, for a
gauge transformation Ω ¼ exp iεðxÞ, we find

∂Sbulk3

∂ε ¼ ic3
Λ
jΛj ϵμν∂μĀν

����
s¼L

s¼0

∂Sbulk5

∂ε ¼ ic5
Λ
jΛj ϵμνρσ∂μ½ĀνĀρĀσ þ 2Āν∂ρĀσ�

����
s¼L

s¼0

ð7Þ

which has exactly the right structure to cancel the anoma-
lies of the chiral modes at s ¼ 0 and at s ¼ �L, each with
the correct local gauge field ĀμðsÞ, which is precisely what
is needed to account for the overall gauge invariance of Δ.
The existence of the Chern-Simons operators Eq. (5) in

the effective action precludes interpreting the theory Eq. (1)
as a local d-dimensional field theory. To illustrate this
we return to the simple Uð1Þ example in d ¼ 2 given in
Eq. (4). In this case

Sbulk3 ∝
Z

d2x
Z

ds½1 − ϵðsÞ�ϵabcĀa∂bĀc

¼ 2

Z
d2xd2y

�∂μ∂α

□
AαðxÞ

�
Γðx − yÞ

×

�∂μ∂β

□
ϵβγAγðyÞ

�
ð8Þ

with ΓðrÞ ¼ ½δ2ðrÞ − ðμ2=4πÞe−μ2r2=4�, where we used the
decomposition Eq. (3) and solutions Eq. (4). Because of
the inverse Laplacian factors, the only way we can have
the effective action behave like a local 2-dimensional
theory is if either Γ or the prefactor of S3 vanishes. If
we take the limit ξ → 0 to turn off the gradient flow, then
μ ¼ ffiffiffiffiffiffiffiffiffiffiffi

Λ=ξL
p

→ ∞, ðμ2=4πÞe−μ2r2=4 → δ2ðrÞ, and Γ van-
ishes. In this limit the gauge field has neither an s
component nor s dependence and so cannot contribute
to the Chern-Simons action. This is the limit in which one
recovers the conventional application of domain wall
fermions to d ¼ 2 QED: one has a local, 2-dimensional
theory of a massless Dirac fermion and vanishing Chern-
Simons action. However, in the case we are interested in
with ξ ¼ 1, then Γ does not vanish in the limits μ ¼ffiffiffiffiffiffiffiffiffi
Λ=L

p
→ 0 as L → ∞, and the only way to recover an

effective action with a local 2-dimensional description is to
have the contributions of the various species of bulk
fermions to the Chern-Simons action cancel, which is
precisely equivalent to requiring the fermion representation
of the target chiral gauge theory in two dimensions to be
free of gauge anomalies. With the Chern-Simons operator
vanishing, the remaining bulk fermion contributions to the
effective action are suppressed by powers of Λ and
irrelevant. This argument holds for the construction of
chiral gauge theories in four dimensions as well.
Up to this point we have only discussed a continuum

model. There are no apparent obstacles to discretizing the
theory using an action similar to the one commonly used
for domain wall fermions [36], only with gauge fields
defined by Eq. (2). The extra dimension and the required
large volume limits will pose computational challenges, but
the biggest obstacle will likely be the sign problem that is
generic for chiral gauge theories due to the phase of the
integration measure in the continuum [37].
Topology.—Up to this point our analysis has focused on

gauge field flow to the trivial fixed point of Eq. (2), where Āμ
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is pure gauge. In general, any classical solution to the
d-dimensional Yang-Mills (Maxwell) action is a fixed point,
although it is plausible that the only attractive fixed points in
each topological sector are the exact multi-instanton sol-
utions. For example, an arbitrary 4-dimensional Yang-Mills
gauge field configuration Aμðx; 0Þ with winding number k
could be described by a field with fluctuations about n
instantons and n̄ ¼ ðn − kÞ anti-instantons, which would
flow to a configuration at s ¼ ∞ with k instantons and no
anti-instantons. This would allow nontrivial correlation
functions between ordinary fermions and fluff through ’t
Hooft interactions [38]. For example, with one flavor of
Dirac fermion ψ and its fluff partner χ, one would find a
nonzero expectation value in such a gauge configuration for
ðψ̄LψRÞnðψ̄RψLÞn̄ðχ̄LχRÞn−n̄. In a weakly coupled theory
this operator would be proportional to exp½−ðnþ n̄ÞS0�,
where S0 ∝ 1=α is the large action for a single instanton, and
the effect of the ’t Hooft vertex would be negligible. In a
strongly coupled theory one would not expect topological
effects to be suppressed; however, it seems plausible that a
generic configuration in volume V with a large number of
instantons and anti-instantons n, n̄ ∝ V but a much smaller
net topological charge, ðn − n̄Þ ∝ ffiffiffiffi

V
p

, the spatial locations
of the ðn − n̄Þ instantons that survive the flow to s ¼ ∞
would not be highly correlated spatially with the s ¼ 0
gauge field configuration. Thus the ’t Hooft operator that
received an expectation value would be of the formR
d4xOðxÞ R d4yO0ðyÞ, where O is comprised of fermions

andO0 of fluff. Such a vertex is nonlocal, but does not allow
momentum to be transmitted between the two worlds at
s ¼ 0 and s ¼ ∞, and may not even be an extensive
contribution to the action. Thus its phenomenology may
prove to be benign. A natural first step toward better
understanding our proposal would be to investigate the
nature of this topological interaction in a vectorlike gauge
theory (where both matter and fluff are in a real representa-
tion of the gauge group) which would not suffer a sign
problem. Other features of the theory could also be explored,
such as whether colored fluff is confined.
If compatible with standard model phenomenology, the

existence of fluff with its topological interactions could
conceivably be a necessary, if unexpected, nonperturbative
feature of chiral gauge theories. If one indeed takes such a
view, then one must speculate whether the construction
outlined in this Letter is more than a prescription for the
nonperturbative regularization of chiral gauge theories, or a
technical approach for their numerical simulation. Could it
actually be realized in Nature? In this scenario the standard
model possesses fluff quarks and leptons which have
resisted discovery due to their infinitely soft form factors
under gauge interactions (and possibly gravitational inter-
actions, due to Ricci flow). The prospect that fluff could
decouple from propagating gauge fields yet participate in
the topological structure of the vacuum is intriguing,
perhaps allowing a massless fluff quark to solve the strong

CP problem without being easily seen. The phenomenol-
ogy and cosmology of such matter is under investigation.

We gratefully acknowledge comments by M. Golterman,
M. Lüscher, R. Narayanan, and Y. Shamir. This work was
supported by the NSF Graduate Research Fellowship under
Grant No. DGE-1256082 and by the DOE Grant No. DE-
FG02-00ER41132.

*grabow@uw.edu
†dbkaplan@uw.edu

[1] M. Golterman, Nucl. Phys. B, Proc. Suppl. 94, 189 (2001).
[2] D. B. Kaplan, Nucl. Phys. B, Proc. Suppl. 30, 597 (1993).
[3] M. Golterman and Y. Shamir, Phys. Rev. D 70, 094506

(2004).
[4] P. V. D. Swift, Phys. Lett. 145B, 256 (1984).
[5] J. Smit, Acta Phys. Polon. B 17, 531 (1986).
[6] E. Eichten and J. Preskill, Nucl. Phys. B268, 179 (1986).
[7] E. Poppitz and Y. Shang, J. High Energy Phys. 08 (2007)

081.
[8] X.-G. Wen, Chin. Phys. Lett. 30, 111101 (2013).
[9] Y.-Z. You and C. Xu,, Phys. Rev. B 91, 125147 (2015).

[10] R. Narayanan and H. Neuberger, Nucl. Phys. B412, 574
(1994).

[11] M. Luscher, Nucl. Phys. B549, 295 (1999).
[12] M. F. L. Golterman and Y. Shamir, Phys. Rev. D 51, 3026

(1995).
[13] D. B. Kaplan, Phys. Lett. B 288, 342 (1992).
[14] C. P. Korthals-Altes, S. Nicolis, and J. Prades, Phys. Lett. B

316, 339 (1993).
[15] M. F. L. Golterman, D. N. Petcher, and J. Smit, Nucl. Phys.

B370, 51 (1992).
[16] M. F. L. Golterman, D. N. Petcher, and E. Rivas, Nucl. Phys.

B395, 596 (1993).
[17] C. Chen, J. Giedt, and E. Poppitz, J. High Energy Phys. 04

(2013) 131.
[18] R. Narayanan and H. Neuberger, Phys. Lett. B 302, 62

(1993).
[19] H. Neuberger, Phys. Lett. B417, 141 (1998).
[20] M. F. L. Golterman, K. Jansen, and D. B. Kaplan, Phys.

Lett. B 301, 219 (1993).
[21] D. B. Kaplan and M. Schmaltz, Phys. Lett. B 368, 44

(1996).
[22] J. Eells and J. H. Sampson, Am. J. Math. 109 (1964).
[23] R. S. Hamilton et al., J. Diff. Geom. 17, 255 (1982).
[24] G. Perelman, arXiv:math/0211159.
[25] M. F. Atiyah and R. Bott, Proc. R. Soc. A 308, 523 (1983).
[26] R. Narayanan and H. Neuberger, J. High Energy Phys. 03

(2006) 064.
[27] M. Luscher, J. High Energy Phys. 08 (2010) 071.
[28] M. Luscher and P. Weisz, J. High Energy Phys. 02 (2011)

051.
[29] C. Morningstar and M. J. Peardon, Phys. Rev. D 69, 054501

(2004).
[30] S. Güsken, Nucl. Phys. B, Proc. Suppl. 17, 361 (1990).
[31] M. Luscher, Proc. Soc., LATTICE2013 (2014) 016.
[32] L. Del Debbio, A. Patella, and A. Rago, J. High Energy

Phys. 11 (2013) 212.

PRL 116, 211602 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
27 MAY 2016

211602-4

http://dx.doi.org/10.1016/S0920-5632(01)00953-7
http://dx.doi.org/10.1016/0920-5632(93)90282-B
http://dx.doi.org/10.1103/PhysRevD.70.094506
http://dx.doi.org/10.1103/PhysRevD.70.094506
http://dx.doi.org/10.1016/0370-2693(84)90350-2
http://dx.doi.org/10.1016/0550-3213(86)90207-5
http://dx.doi.org/10.1088/1126-6708/2007/08/081
http://dx.doi.org/10.1088/1126-6708/2007/08/081
http://dx.doi.org/10.1088/0256-307X/30/11/111101
http://dx.doi.org/10.1103/PhysRevB.91.125147
http://dx.doi.org/10.1016/0550-3213(94)90393-X
http://dx.doi.org/10.1016/0550-3213(94)90393-X
http://dx.doi.org/10.1016/S0550-3213(99)00115-7
http://dx.doi.org/10.1103/PhysRevD.51.3026
http://dx.doi.org/10.1103/PhysRevD.51.3026
http://dx.doi.org/10.1016/0370-2693(92)91112-M
http://dx.doi.org/10.1016/0370-2693(93)90335-F
http://dx.doi.org/10.1016/0370-2693(93)90335-F
http://dx.doi.org/10.1016/0550-3213(92)90344-B
http://dx.doi.org/10.1016/0550-3213(92)90344-B
http://dx.doi.org/10.1016/0550-3213(93)90049-U
http://dx.doi.org/10.1016/0550-3213(93)90049-U
http://dx.doi.org/10.1007/JHEP04(2013)131
http://dx.doi.org/10.1007/JHEP04(2013)131
http://dx.doi.org/10.1016/0370-2693(93)90636-V
http://dx.doi.org/10.1016/0370-2693(93)90636-V
http://dx.doi.org/10.1016/S0370-2693(97)01368-3
http://dx.doi.org/10.1016/0370-2693(93)90692-B
http://dx.doi.org/10.1016/0370-2693(93)90692-B
http://dx.doi.org/10.1016/0370-2693(95)01485-3
http://dx.doi.org/10.1016/0370-2693(95)01485-3
http://dx.doi.org/10.2307/2373037
http://arXiv.org/abs/math/0211159
http://dx.doi.org/10.1098/rsta.1983.0017
http://dx.doi.org/10.1088/1126-6708/2006/03/064
http://dx.doi.org/10.1088/1126-6708/2006/03/064
http://dx.doi.org/10.1007/JHEP08(2010)071
http://dx.doi.org/10.1007/JHEP02(2011)051
http://dx.doi.org/10.1007/JHEP02(2011)051
http://dx.doi.org/10.1103/PhysRevD.69.054501
http://dx.doi.org/10.1103/PhysRevD.69.054501
http://dx.doi.org/10.1016/0920-5632(90)90273-W
http://dx.doi.org/10.1007/JHEP11(2013)212
http://dx.doi.org/10.1007/JHEP11(2013)212


[33] H. Suzuki, Prog. Theor. Exp. Phys. 2013, 083B03 (2013);
2015, 079201 (2015).

[34] In the lattice theory, exact symmetry of the continuum
formulation that ensures massless chiral surface modes at
finite L is broken by the Wilson term, and the limit ΛL → ∞
must alsobe taken inorder toeliminate residualOðe−ΛLÞ chiral
symmetry breaking couplings between fermions and fluff.

[35] C. G. Callan, Jr. and J. A. Harvey, Nucl. Phys. B250, 427
(1985).

[36] Y. Shamir, Nucl. Phys. B406, 90 (1993).
[37] L. Alvarez-Gaume, S. Della Pietra, and V. Della Pietra,

Phys. Lett. 166B, 177 (1986).
[38] G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976).

PRL 116, 211602 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
27 MAY 2016

211602-5

http://dx.doi.org/10.1093/ptep/ptt059
http://dx.doi.org/10.1093/ptep/ptv094
http://dx.doi.org/10.1016/0550-3213(85)90489-4
http://dx.doi.org/10.1016/0550-3213(85)90489-4
http://dx.doi.org/10.1016/0550-3213(93)90162-I
http://dx.doi.org/10.1016/0370-2693(86)91373-0
http://dx.doi.org/10.1103/PhysRevLett.37.8

