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The bond-orientational order parameters introduced by Steinhardt et al. [Phys. Rev. B 28, 784 (1983)]
have been an invaluable measurement tool for assessing short-range order in disordered, close-packed
assemblies of particles in which the particle positions are known. In many glassy systems the measurement
of particle position is not possible or limited (field of view, thickness, resolution) and the bond-orientational
order parameters cannot be measured, or adequately sampled. Here we calculate a set of rotationally
averaged, projected bond-orientational order parameters that reflect the symmetries of close-packed
particle clusters when projected onto a plane. We show by simulation that these parameters are unique
fingerprints that can be directly compared to angular correlations in limited-volume, transmission
geometry, diffraction patterns from close-packed glassy assemblies.
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The role of local structures in glass formation and proper-
ties is a long-standing subject that is still contested in
contemporary debate [1]. In close-packed systems, it has
long been thought that the stability of icosahedral clusters
over nearest-neighbor length scales in the liquid [2] contrib-
utes greatly to the slowing structural dynamics at the glass
transition. More recent work has suggested that any “locally
favoured structure” can slow dynamics [3], with icosahedra
still potentially playing a role in preventing crystallization
[4]. Other contrasting studies identify the extent of ordering
in the liquid next to a crystal interface asmore critical to glass
formability than any local structure in the bulk [5]. Despite
the lack of consensus regarding the role of local structure, the
concept of the three-dimensional bond-orientational order
parameters and related invariant quantities introduced by
Steinhardt, Nelson, and Ronchetti [6] has been extremely
powerful in canvassing order in amorphous close-packed
systemswith knownparticle positions.Using these concepts,
computer-generated models and confocal microscopy data
sets can be distinguished by their dominant short-range order
characteristics and also the spatial variation of these local
preferred structures [3,4,6].
While there have been many developments in the imple-

mentation of scanning transmission confocal electron
microscopy [7–9], measurement of atomic coordinates in
three dimensions in disordered materials has not been
achieved. Confocal optical microscopy has limits to field
of view and depth, which are an impediment to obtaining
statistical information about order in bulk materials. In
contrast, scanning transmission diffraction experiments
can statistically sample many structural configurations.
Limited-volume diffraction measurements of disordered
systems in a transmission geometry display variations in

diffracted intensity that reflect local order (Fig. 1) [10–13].
The collimated and coherent illumination can be limited
laterally by an aperture upstream of the specimen. The beam
can be scanned (scanning transmission electron microscope)
or the stage can be translated (scanning transmission x-ray
diffraction) to collect an ensemble of diffraction patterns.

FIG. 1. (a) Schematic of limited-volume diffraction measure-
ments of disordered materials. An upstream aperture in either the
near or far fields limits the illumination area, resulting in the
diffraction pattern of the aperture modulated by the diffracted
intensity from the disordered structure. (b) X-ray microdiffraction
pattern of a 300 nm diameter colloidal glass with a 20 μm near-
field aperture. (c) Electron nanodiffraction pattern of a Zr36Cu64
glass with a 5 μm aperture in the far field and 5.6 Å probe size.

PRL 116, 205501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
20 MAY 2016

0031-9007=16=116(20)=205501(5) 205501-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.116.205501
http://dx.doi.org/10.1103/PhysRevLett.116.205501
http://dx.doi.org/10.1103/PhysRevLett.116.205501
http://dx.doi.org/10.1103/PhysRevLett.116.205501


Scanning x-raymicrodiffraction and scanning electron nano-
diffraction have been applied to colloidal [10,14] and atomic
systems [11,15], respectively. Much progress has beenmade
in interpreting the fluctuations and angular correlations in the
diffracted intensity employing simulation [11,15] and by
employing reverseMonteCarlo calculations to refinemodels
[16,17]. Modeling diffraction from disordered materials is
computationally intensive, and, in general, a number of
simplifying assumptions such as kinematical diffraction are
employed to reduce calculation size. Moreover, despite the
inclusion of multiple experimental constraints, models pro-
duced by reverseMonteCarlo calculationmay not be unique.
More direct techniques to probe order from such measure-
ments are sought.
In thisLetter,we calculate the rotationally averagedFourier

coefficients of projected angular symmetries in kinematical
diffractionpatterns fromarchetypal nearest-neighbor clusters.
These calculations show that these rotationally averaged
Fourier coefficients are a unique fingerprint of the short-
range cluster in the projection geometry, analogous to the
invariant bond-orientational order parameters in three dimen-
sions. We demonstrate by simulation that these rotationally
averaged Fourier coefficients are a comparable quantity to the
magnitudes of angular correlations extracted from limited-
volume diffraction patterns from glasses [18]. Thus, these
unique fingerprints of the projected angular symmetry of
nearest-neighbor clusters have the potential to be used to
measure the proportions of locally preferred structures
directly from experiment and become a powerful tool in
understanding the role of structure in glass-forming systems.

The symmetries present in limited-volume diffraction
patterns from disordered materials are often subtle. To
detect and quantify the symmetries present in each pattern
obtained at position ~r ¼ ðx; yÞ in the lateral plane of the
specimen, the angular autocorrelation function as a func-
tion of scattering vector magnitude has been employed
[Eq. 1] [11,14,15]. The scattering vector magnitude is

j~qj ¼ q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y

q
¼ 4π sin θ=λ, with λ as the wave-

length.

Cð~r; q;ΔÞ ¼ hIðq;ϕÞIðq;ϕþ ΔÞiϕ − hIðq;ϕÞi2ϕ
hIðq;ϕÞi2ϕ

: ð1Þ

Here, Ið~r; q;ϕÞ ¼ Iðq;ϕÞ is the intensity diffracted into a
given q and azimuthal angle ϕ, and hiϕ denotes averag-
ing over the azimuthal angle at a given q [19],
hXiϕ ¼ ð1=2πÞ R 2π

0 Xdϕ. These angular autocorrelation
functions are decomposed into a Fourier series to extract
the magnitudes of each symmetry at each scattering vector,

Cð~r; q;ΔÞ ¼
Xn¼∞

n¼−∞
Cn
qeinΔ; ð2Þ

where the Fourier coefficients are
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ð4Þ

This result shows that the Fourier coefficients of the
autocorrelation cnq are a function of the Fourier coefficients
of the intensity Inq [19].
Formaterials inwhich the reciprocal specimen thickness is

comparable to the Ewald sphere curvature and in which
multiple diffraction events can occur, the diffraction pattern
will not possess Friedel symmetry and the angular auto-
correlation function will display odd symmetries [18].
Thickness can be limited to the extent that the Ewald sphere
can be approximated as flat (20 μmfor 5 keVx rays and4 nm
for 300 keVelectrons), but multiple scattering is still present
for these low thicknesses. Recently, a technique to correct the
average angular symmetry magnitudes from an ensemble of
dynamical diffraction patterns and recover the average
kinematical symmetry magnitudes was demonstrated [18].
Here, we derive the rotationally averaged magnitudes of
these Fourier coefficients for close-packed atomic clusters
using the simplifying assumptions of planar Ewald sphere
and kinematical diffraction. This derivation is similar to that

presented by Altarelli, but with many simplifying assump-
tions and restrictions that can be applied to present exper-
imental geometries and analysis [11,18].
In the limit of a flat Ewald sphere and for N scatterers

with isotropic form factors, fð~qÞ ¼ fðqÞ, the diffracted
intensity equals

Ið~qÞ ¼ λ2
XN

i

XN

j

fiðqÞfjðqÞei~q·~rij : ð5Þ

~rij ¼ ~ri − ~rj is the distance between scatterers. We can
simplify this expression:

Ið~qÞ ≈ λ2f2ðqÞ
XN

i

XN

j

eiqrij cosðϕ−ϕijÞ

¼ λ2f2ðqÞ
XN

i

XN

j

Xm¼þ∞

m¼−∞
imJmðqrijÞeimðϕ−ϕijÞ: ð6Þ
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Here ϕ and ϕij are the azimuthal angles of ~q and ~rij,
and in the final line we have employed the Jacobi-Anger
expression:

eiz cos θ ¼
Xm¼þ∞

m¼−∞
imJmðzÞeimθ: ð7Þ

We can now evaluate the Fourier coefficients of the
diffracted intensity and so calculate the Fourier coefficients
of the angular autocorrelation:

Inq ¼ λ2f2ðqÞ
XN

i

XN

j

Xm¼þ∞

m¼−∞
imJmðqrijÞ

× e−imϕij
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The Fourier coefficients of the normalized angular auto-
correlation are thus

cnq=c0q ¼
�
�
�
�
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: ð9Þ

We calculated the Fourier coefficients of the angular
autocorrelation functions from kinematical diffraction pat-
terns of unit clusters. The 13-atom icosahedral cluster (icos)
oriented down the tenfold axis of symmetry displays only a
strong tenfold symmetry as anticipated [Fig. 2(a)]. A
symmetric cluster such as an icosahedron oriented down
an arbitrary orientation displays many symmetries
[Fig. 2(b)]. Averaging a face-centred cubic (fcc) cluster
over 1000 random orientations, we see that the magnitude
of the Fourier coefficients is appreciable only in a range of
scattering vector close to 1.23 × 2π=d ¼ 7.7 Å−1, as pre-
dicted by the Ehrenfest relation [20]. We averaged the
magnitudes of the Fourier coefficients from the fcc cluster
over 20 000–160 000 random rotations in the scattering
vector range of 5.5–11 Å−1 that corresponds to the first
main diffraction peak. Both the unnormalized and normal-
ized averaged Fourier coefficients converge quickly to
stable values [21]. These values provide a unique finger-
print of the projected symmetries of the fcc cluster.
The average magnitudes of the Fourier coefficients from

160 000 random orientations for the fcc, icos, 13-atom
hexagonal close-packed (hcp), 9-atom body-centred cubic
(bcc), and 8-atom simple cubic (sc) clusters are displayed in
Fig. 3. It is clear that each cluster has a unique pattern of
average projected symmetry magnitudes. For example, the
sc cluster has only predominantly low-order symmetries
compared to the other clusters. The unnormalized Fourier
coefficients and the normalized Fourier coefficients are not
equivalent, with the normalized Fourier coefficients

providing clearer trends. The fcc, bcc, and sc clusters have
the greatest magnitude in the fourfold symmetry. The hcp
and icos clusters have the greatest magnitude in the sixfold
symmetry. In Fig. 3(c) we display the magnitude of the

FIG. 2. Unnormalized and normalized Fourier coefficients of
(a) the icos cluster oriented down its tenfold symmetry axis,
(b) the icos cluster oriented in an arbitrary rotation, and (c) the fcc
cluster averaged over 1000 random rotations.

FIG. 3. Unnormalized (a), normalized (b), and normalized to
sixfold (c) Fourier coefficients of the fcc, hcp, icos, bcc, and sc
clusters averaged over 160 000 random orientations.
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normalized symmetry magnitudes relative to the sixfold
Fourier coefficient. This exaggerates the previously noted
trends and provides a means to internally normalize these
symmetry magnitudes.
The icos cluster shows the most even distribution and

lowest values overall of normalized symmetry magnitudes,
indicating that this cluster has lower projected symmetry
than the other ones. This is not intuitive as the icos cluster
in three dimensions (Ih point group) has a much higher
point group symmetry (60) than, for example, the point
group of the fcc cluster (Oh) with point symmetry of 24
[21]. Projection of a structure diminishes the symmetry of
the object. Even so, the higher symmetry of the icos cluster
includes 60 rotational axes and 15 mirror planes that will
still give rise to many projected symmetries. To understand
this result, maps of Fourier coefficients were calculated
using rotation angles around the x and y axes in the range
½0; π=2� (fcc, Fig. 4; icos, Fig. 5; sc, hcp, and bcc,
Supplemental Material [21]). As anticipated, the maps
from the icos cluster are more highly featured than the
maps from the fcc cluster, but their average magnitude is
lower. This is due to the fact that the projected angles
between atoms (based on 2π=5) do not give large values
for even symmetries. The term e−inϕij is low for many
orientations. This symmetry degradation due to projection
from three dimensions to two is analogous to the reduction
in translational symmetry of quasicrystals when the spatial
dimension is reduced from six to three.
The rotationally averaged Fourier coefficients are a unique

fingerprint of the projected symmetries of the short-range
cluster. Comparable quantities would be obtained from
limited-volume diffraction patterns from a dilute gas of
randomly oriented clusters. Are these characteristic sym-
metries also useful for dense, random, close-packed

structures? To answer this, we compare the magnitudes of
the Fourier coefficients for strings of structurally uncorrelated
fcc clusters and the average of the magnitudes of Fourier
coefficients for the same individual fcc clusters [four clusters,
Fig. 6(a); twoand three clusters, SupplementalMaterial [21]].
Differences between these quantities reflect the degree to

FIG. 4. Top: Maps of Fourier coefficients from the fcc cluster
calculatedwith rotation angles around thex andy axes in the rangeof
ð0; π=2Þ. Themaximum intensity is displayed in eachmap.Bottom:
Schematic showing the cluster orientations at the map poles.

FIG. 5. Top: Maps of Fourier coefficients from the icos cluster
calculatedwith rotation angles around thex andy axes in the rangeof
ð0; π=2Þ. Themaximum intensity is displayed in eachmap.Bottom:
Schematic showing the cluster orientations at the map poles.

FIG. 6. (a) Comparison between the magnitudes of the Fourier
coefficients for a string of four structurally uncorrelated clusters
and the average of the magnitudes of Fourier coefficients for the
same individual clusters. (b) Rotationally averaged Fourier
coefficients for a fcc cluster with a single systematic distortion.
(c) Averaged Fourier coefficients for 160 000 fcc clusters with
random orientations and random distortions. All Fourier coef-
ficients are normalized to the sixfold coefficient.
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which correlations between particles in different clusters
(viewed in projection) contribute to the Fourier coefficients.
Note that this is the worst scenario in which neighboring
clusters have no structural correlation. In a three-dimensional
close-packed glass correlations can extend over many clus-
ters. With increasing cluster number there is growing
disagreement between the symmetry magnitudes from the
string of clusters and the averaged magnitudes from the
individual clusters. Despite this, general trends are retained.
This demonstrates that the rotationally averaged Fourier
coefficients from archetypal short-range clusters can be
compared to limited-volume diffraction patterns from
dense three-dimensional glasses for limited thicknesses, an
experimentally accessible regime [11,18].
Realistic, random, close-packed systems contain a degree

of polydispersity (colloids) or bond length variation due to
chemical ordering (multicomponent metallic glasses)
resulting in distorted clusters. These distortions might be
systematic, or distributed among many configurations. We
recalculated the rotationally averaged Fourier coefficients for
a fcc cluster with a systematic distortion by randomly
displacing the particle positions with standard deviations of
0.005–0.2 Å (0.5%–20% distortion). As seen in Fig. 6(b)
(Supplemental Material [21] for unnormalized Fourier coef-
ficients), the average projected symmetry fingerprint is
preserved for all these displacements, with marked similarity
seen for displacements up to 5%, similar to variations in the
first nearest-neighbor position of real systems. To model
distributed distortions, we calculated the averaged Fourier
coefficients for 160 000 fcc clusters with random orientations
and also random particle displacements of standard deviation
0.005–0.2 Å [Fig. 6(c) and Supplemental Material [21] for
unnormalized Fourier coefficients]. At the highest random
displacements (0.1 and 0.2 Å) the Fourier coefficients for
tenfold and twelvefold symmetry are slightly elevated, flat-
tening the distribution. These displacements aremuch greater
than in realistic systems, and indeed, with such high displace-
ments, cluster transformation could occur.
We have calculated the rotationally averaged Fourier

coefficients of the angular autocorrelation functions from
kinematical limited-volume diffraction patterns for arche-
typal short-range clusters. These quantities converge to
stable values giving a fingerprint of the average projected
symmetries that is unique for each cluster. These unique
fingerprints will be a powerful new tool to examine the
existence and nature of preferred local structures in glasses.
For example, a least squares fitting procedure could be used
to quantify populations of clusters from the average angular
symmetry magnitudes in ensembles of limited-volume
diffraction patterns. Our analysis is developed for disor-
dered, solid, close-packed systems. Similar approaches
may be useful for the study of liquids [22] and suspensions
of anisotropic particles and molecules.
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