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We report on the experimental implementation of tunable occupation-dependent tunneling in a Bose-
Hubbard system of ultracold atoms via time-periodic modulation of the on-site interaction energy. The
tunneling rate is inferred from a time-resolved measurement of the lattice site occupation after a quantum
quench. We demonstrate coherent control of the tunneling dynamics in the correlated many-body system,
including full suppression of tunneling as predicted within the framework of Floquet theory. We find that
the tunneling rate explicitly depends on the atom number difference in neighboring lattice sites. Our results
may open up ways to realize artificial gauge fields that feature density dependence with ultracold atoms.
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Ultracold atoms in optical lattices provide an excellent
platform for highly controlled studies of strongly correlated
states of matter, paradigm examples being the observation
of a Mott insulator for bosons [1] and fermions [2,3]. At the
same time, the unprecedented temporal control over system
parameters allows for the investigation of coherent dynam-
ics in the many-body system [4,5]. Among a plethora of
associated phenomena, time-periodic driving of the quan-
tum system opens up particularly exciting possibilities. The
effect of such a modulation can often be described within
an effective time-independent Floquet-Hamiltonian with
novel synthetically engineered properties [6–8]. Pioneering
work in this direction has demonstrated the coherent
control of the single-particle tunneling amplitude in shaken
lattices [9], with applications towards shifting phase boun-
daries [10,11] and transport [12,13], observation of mag-
netic frustration [14], and even the realization of artificial
gauge potentials [15–17] and topological band structures
[18]. Here, we go beyond control of the single-particle
Hamiltonian by implementing tunable correlated tunneling
for which coupling explicitly depends on the presence of
other particles in the interacting many-body system [19].
This opens a new platform for the exploration of phenom-
ena in lattices with occupation-dependent hopping, ranging
from a variety of extended Hubbard models with rich phase
diagrams for bosons [20] and fermions [21–23] to sit-
uations with broken mirror symmetry [24] and potentially
dynamical synthetic gauge fields [25].
Our approach exploits a strongly correlated lattice gas of

bosonic cesium (Cs) atoms in the presence of periodically
modulated particle-interactions, described by the Bose-
Hubbard Hamiltonian [26]

Ĥ ¼ −J
X

hi;ji
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As usual, â†i (âi) are the bosonic creation (annihilation)
operators at the ith lattice site, n̂i ¼ â†i âi are the number
operators, and J is the tunnel matrix element between
neighboring lattice sites. At the heart of the experiments
reported in this Letter is a time-dependent, rapidly
oscillating on-site interaction energy UðtÞ of the form
UðtÞ ¼ U þ δU sin ð2πfmodtÞ. For a sufficiently large
oscillation frequency hfmod ≫ U; J, one obtains an effec-
tive time-independent description by expanding Eq. (1) in a
Floquet basis and retaining a single time-averaged Floquet
sector [19]. In striking contrast to shaken lattices, modu-
lated interactions generate dynamics that explicitly depend
on the occupation number [19,25], so that the modulation-
induced tunneling in the effective Hamiltonian,
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is now occupation dependent. Specifically, the amplitudes
Jeff ¼ J × J0ðKΔnÞ of the tunneling processes are deter-
mined by the strength of the modulation K ¼ δU=ðhfmodÞ
via a rescaling with the zeroth-order Bessel function J0
[Fig. 1(a)]. One consequence is a suppression of hopping
for specific choices of K, which explicitly depends on
the particle number difference Δn (after applying â) at the
lattice sites involved, known as many-body coherent
destruction of tunneling [27].
We demonstrate the modulation-induced coherent con-

trol of occupation-dependent atom tunneling after a quan-
tum quench in the correlated many-body system. Starting
from localized bosons prepared in an atomic Mott insulator,
we suddenly switch off particle interactions by means of a
Feshbach resonance and identify the subsequent delocal-
ization processes as a sensitive probe for hopping in the
lattice. This forms the basis for a controlled study of the
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many-body tunneling dynamics in the presence of peri-
odically modulated interactions [Fig. 1(b)].
Our experiments start with a Cs Bose-Einstein conden-

sate [28], from which we prepare a three-dimensional (3D)
one-atom-per-site Mott insulator in a cubic optical lattice
at a scattering length as ≈ 230a0 [29]. The lattice depth
in all directions is Vq ¼ 20ER (q ¼ x, y, z), where ER ¼
h × 1.325 kHz is the photon recoil energy. A Feshbach
resonance allows us to control as and thereby U indepen-
dent of J [33]. First, we investigate tunneling dynamics in
the lattice after a sudden quench of U to the vicinity of the
noninteracting limit. Specifically, starting deep in the Mott-
insulating phase with localized atoms, we quickly ramp U
to a value in the range jU=hj≲ 200 Hz and wait for a hold
time of th ¼ 50 ms. Subsequently, the scattering length is
rapidly set back to its initial value, which freezes the local
site occupancies. We then detect the total number of atoms
residing in singly and doubly occupied lattice sites via
Feshbach-molecule formation and detection, involving a
narrow g-wave Feshbach resonance with a pole at 19.8 G
[34]. The number of atoms in sites occupied by more than
two bosons is inferred by means of controlled recombina-
tion loss [35,36]. For this, we quickly ramp the magnetic
field to 9.3 G, where as is large and negative, inducing fast
loss due to three-body recombination [37]. The sample
is held for 10 ms, long enough to lose all particles at sites
with occupation number larger than 2, before detecting
the remaining atoms. Note that the site occupancies are
measured individually in independent realizations of the
experiment.
The result of this measurement is shown in Fig. 2(a).

While the total atom number of the sample (circles) remains
constant as a function of U, a pronounced resonance for
the number of singly occupied lattice sites (triangles) is

observed. The position of the resonance minimum is
identified with a vanishing value of U. A Gaussian fit to
the data reveals a half-width-at-half-maximum (HWHM) of
68(3) Hz, which is comparable with the calculated lattice
bandwidth, 12J=h ¼ 39.6 Hz. The reduction of the number
of lattice sites with unity filling arises from tunneling-
induced delocalization, which is energetically allowed
for sufficiently small U. That process is accompanied by
the buildup of multiply occupied lattice sites. Accordingly,
after the time evolution we observe atoms residing in sites
occupied by two (squares) and more than two (diamonds)
bosons resonantly enhanced around U ¼ 0. For the latter,
note the reduced Gaussian HWHM of 34(2) Hz, reflecting
the larger on-site energy associated with three particles on
the same lattice site.
Next, we study the dynamics after the quench to U ¼ 0

for different depths of the optical lattice. In order to provide
similar starting conditions for all measurements, the initial
Mott-insulating state is now prepared in a deeper potential
with Vx;y;z ¼ 30ER. The quench in U is done as before, but
now it is accompanied by an additional rapid change of the
lattice depth to the desired value. After letting the sample
evolve for a variable time th, the optical lattice and as
are both ramped back to their initial values, followed by
the aforementioned detection scheme for determining site
occupancies. In Fig. 2(b), the normalized number of singly
occupied lattice sites as a function of th is depicted for three
different values of the lattice depth. An initial decay is
observed over a time scale that is on the order of the single
particle tunneling time, before the signal levels off to a
stationary value. The initial decay is quantified by a linear
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FIG. 2. Decay of singly occupied lattice sites after a quench
from a Mott insulator with unity filling to noninteracting bosons.
(a) Number of atoms in singly (triangles) and doubly (squares)
occupied sites, in sites with occupation number ≥ 3 (diamonds),
as well as the total number of atoms (circles) as a function of U
after a hold time th ¼ 50 ms for Vx;y;z ¼ 20ER. Solid lines show
(double-)Gaussian fits to the data. (b) Normalized number of
singly occupied sites as a function of th after a quench to U ¼ 0
for Vx;y;z ¼ 20ER (squares), 25ER (triangles), and 30ER (circles).
Solid lines show linear fits to the initial decay. (c) Initial decay
rate γ of singly occupied sites after a quench to U ¼ 0 as a
function of the tunneling rate J in three dimensions (squares) and
one dimension (triangles). The dashed lines are linear fits to the
data. The shaded area indicates an estimate for γ as extracted from
numerical simulations in one dimension [29].
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FIG. 1. Controlling occupation-dependent tunneling with
periodically modulated interactions. (a) Renormalized tunneling
rate Jeff=J as a function of the modulation strength K for the
processes j1; 1i − j0; 2i (solid line) and j1; 2i − j0; 3i (dashed
line). Single-particle tunneling (j1; 0i − j0; 1i) is not affected by
the modulation (dotted line). (b) Illustration of the experimental
measurement protocol. Starting from a Mott insulator with unity
filling (top row) the interaction strength is suddenly quenched to
zero. The subsequent delocalization of the initially localized
atoms, resulting in multiply occupied lattice sites, is controlled
via the modulation strength.
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fit, the slope of which delivers a characteristic decay rate γ.
In Fig. 2(c), we show values for γ obtained from such
measurements at different lattice depths as a function of
the corresponding calculated tunneling rate J (squares).
The data suggest a linear dependence, which invites us to
exploit the decay of singly occupied sites after the quench
as a measure for the tunneling rate in the lattice.
Similarly, we measure the decay of single occupancy in

1D chains by varying only the vertical lattice depth Vz
while keeping Vx;y fixed at 30ER. Here, Vz is kept small
compared to Vx;y to ensure decoupling of the 1D systems
over relevant experimental time scales. The results obtained
for γ as a function of J [triangles in Fig. 2(c)] again obey a
linear dependence. A quantitative estimate for γ as
extracted from numerical simulations of a single 1D
Bose-Hubbard chain [29] is found to be in good agreement
with the data. We note that for a fixed J we observe a faster
decay of single occupancy in three dimensions compared to
the 1D case, owing to the increased number of nearest
neighbors. This is quantified by the ratio of the slopes
β3D=β1D ¼ 1.8ð1Þ, which we obtain from linear fits to the
data. The observed ratio is different from 3, as one may
expect from the delocalization process of a single atom
by counting nearest neighbors. This we attribute to the
presence of many particles that all take part simultaneously
in the tunneling dynamics. Indeed, a numerical study of a
simplified model with multiple atoms in a 3D and 1D
configuration predicts a ratio of 1.6 in reasonably good
agreement with the measured value [29].
Having discussed the bare tunneling dynamics in the

many-body system for vanishing particle interaction, we
are now in a position to investigate the situation in the
presence of a periodically modulated on-site interaction.
Starting again from the Mott insulator at Vx;y;z ¼ 20ER,
we perform the quench to U ¼ 0 as before, but now apply
an additional sinusoidal modulation with amplitude δU
and frequency fmod ¼ 120 Hz during th by a periodic
oscillation of the magnetic offset field that controls as. The
normalized number of singly occupied lattice sites as a
function of th is shown in Fig. 3(a) for five data sets
recorded at increasing values of δU. For zero modulation
strength (triangles) we recognize the decay of sites with
unity filling as observed before. Increasing δU leads to a
substantially slower decay (squares), indicative of a
reduced tunneling-induced delocalization of the particles.
When further increasing the modulation strength to
δU=h ¼ 297ð4Þ Hz, the decay is heavily suppressed (dia-
monds), and essentially allows for a controlled pinning of
the particles on their individual lattice sites. For even larger
modulation strength, we observe again decay on a com-
paratively rapid time scale (inverted triangles), while a
second strong suppression of tunneling is seen for δU=h ¼
686ð23Þ Hz (circles). We stress that the lattice depth is kept
at a fixed value for all measurements, and tunneling is thus
fully controlled via the modulation of particle interactions.

As before, the data are analyzed via a linear fit to
the initial decay. From such measurements, we obtain
values for the characteristic decay rate γ over a wide
range of modulation strengths, and plot them in Fig. 3(b) as
a function of δU for two different values of fmod. We
compare the data to the Bessel-function scaling of jJeff j
within the time-independent Floquet-Hamiltonian descrip-
tion of the system (dashed lines). Clear minima in the
measured values for γ are found in accordance with the
zeros of J0½δU=ðhfmodÞ�. This unequivocally demonstrates
a controlled coherent destruction of tunneling in the
interacting many-body system that entirely relies on the
presence of particles in adjacent lattice sites.
Away from these minima, the experimental data lie

significantly below a pure rescaling of γ with the Bessel
function J0. Given the dynamical generation of site
occupancies larger than 2 after the quench in combination
with the occupation dependence of Jeff , one may indeed
expect a more sophisticated behavior for the decay of single
occupancy in the presence of modulated interactions. We
attempt to model these effects via a numerical simulation of
the time evolution under the action of Ĥeff within a reduced

FIG. 3. Controlling the decay of single occupancy in the
presence of modulated interactions after quenching from a Mott
insulator with unity filling to U ¼ 0. (a) Normalized number of
singly occupied lattice sites as a function of th after the quench
for modulation amplitudes δU=h ¼ 0 Hz (triangles), 238(3) Hz
(squares), 297(4) Hz (diamonds), 476(11) Hz (inverted triangles),
and 686(23) Hz (circles) when modulating with fmod ¼ 120 Hz.
Solid lines show linear fits to the initial decay. (b) Initial
decay rate γ of singly occupied sites as a function of δU for
fmod ¼ 120 Hz (triangles) and 200 Hz (circles). The dashed lines
depict γδU¼0 × jJ0ðδU=ðhfmodÞÞj. The solid lines show numerical
results for γ as extracted from a calculation within a 3D lattice
of 7 sites in star-type configuration [29]. For all measurements
in this figure Vx;y;z ¼ 20ER.
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3D lattice that consists of 7 sites arranged in a star-type
configuration [29]. The analysis of single occupancy at the
central lattice site delivers a measure for the rate of decay,
which reproduces the scaling behavior of the measured γ as
a function of δU [solid lines in Fig. 3(b)].
The occupation dependence of Jeff is directly observable

in a further experiment, for which we initially prepare a
sample of randomly distributed singly and doubly occupied
sites at U=h ¼ 420ð20Þ Hz [29]. We rapidly apply a linear
energy offset E per site along the vertical z direction by a
magnetic force, thereby tilting the lattice. After holding the
sample for th ¼ 50 ms in the tilted configuration, we set E
back to zero and detect double occupancy. The number of
atoms in doubly occupied sites as a function of E [Fig. 4(a)]
exhibits two resonances corresponding to resonant
tunneling processes of the type j1; 1i − j2; 0i (E ≈U)
and j2; 1i − j3; 0i (E ≈ 2U) [34,38]. We now adjust E
to either of the detected resonance positions, thereby
selectively addressing one of the two tunneling processes,
and additionally modulate U during ½0; th�. The increase
(decrease) of double occupancy C normalized to its value
without modulation is shown in Fig. 4(b) as a function of
δU. The data exhibit clear minima in accordance with the
zeros of Jeff , indicating many-body coherent destruction of
tunneling. Moreover, the measurement results follow the
qualitative trend expected from the Bessel-function scaling
of Jeff .
Finally, we investigate the system at unity filling with

modulated interactions at nonzero values of U. Again, we

start the experiment from initially localized atoms prepared
in a Mott insulator with Vx;y;z ¼ 20ER. However, the
Mott insulator is now quenched to a finite U in the range
−400 Hz≲U=h≲ 600 Hz. As above, we wait for th ¼
50 ms during which the interaction strength is modulated
around U, before we detect the number of remaining
singly occupied lattice sites. The detected atoms residing
in unity-filled sites as a function of U is shown in Fig. 5 for
two different modulation strengths δU. Depending on the
value of δU, the range of data shown is restricted by the
presence of additional narrow Feshbach resonances that are
otherwise crossed during a modulation cycle [29].
We observe a pronounced resonance centered around

zero on-site interaction energy when δU=h ¼ 290ð4Þ Hz,
indicative of the tunneling-induced decay of single
occupancy. The absence of this resonance for
δU=h ¼ 523ð14Þ Hz, which is in the vicinity of the
Bessel function zero crossing (cf. Fig. 3), reveals the
persistence of the coherent destruction of tunneling
over an extended range of nonzero interaction strengths.
With increasing U, the requirement of rapid modulation
hfmod ≫ U; J for the Floquet analysis leading to Ĥeff
breaks down. This is ultimately signaled by resonant
formation of particle-hole pairs in the Mott insulator as
observed when U=h ≈ fmod and U=h ≈ 2fmod. Modulation
of U in this resonant regime [40] thus provides a novel
alternative to the more conventional lattice-depth-
modulation technique for detecting the Mott gap [41].
In summary, we have demonstrated tunable occupation-

dependent tunneling in a Bose-Hubbard system via peri-
odically driven particle interactions. Our work provides a
basis for future studies of interesting many-body phases in
correlated hopping models, including insulators with both
parity and string order [24,42,43]. While some of them
are expected in the parameter range studied here [19], the
applicability of our technique can be extended, exploiting
narrower Feshbach resonances and faster modulation [44].

FIG. 4. Modulation control of occupation-dependent tunneling
in the tilted lattice. (a) Number of atoms in doubly occupied
lattice sites as a function of the tilt E for as ¼ 80a0 and
Vx;y;z ¼ 20ER. The solid line is a double-Gaussian fit to the
data. Vertical dashed lines mark the calculated values for U
and 2U, the latter corrected for multibody interactions [33,39].
(b) Normalized resonance peak values C=CδU¼0 for the processes
j1; 1i − j2; 0i (triangles) and j2; 1i − j3; 0i (circles) as a function
of δU for fmod ¼ 120 Hz. The solid lines show jJ0ðΔn ×
δU=ðhfmodÞÞj with Δn ¼ 1 and Δn ¼ 2, respectively. Typical
error bars are given for the data point at 380 Hz.

FIG. 5. Off-resonant and on-resonant tunneling control in the
presence of modulated interactions. Number of singly occupied
sites as a function of U after th ¼ 50 ms of modulation at
frequency fmod ¼ 200 Hz with amplitudes δU=h ¼ 290ð4Þ Hz
(squares) and 523(14) Hz (circles). Here, the lattice depth
Vx;y;z ¼ 20ER. Solid lines show fits to the data using a sum of
multiple Gaussians. The data sets are vertically offset for clarity.
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Moreover, combining modulated interactions with Raman-
assisted hopping may allow for the creation of density-
dependent synthetic gauge fields [25,45]. This work can
also be extended to investigate the phase diagram of
recently discussed intermediate-time steady states in driven
lattice systems [46].
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