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We investigate the close connection between the quantum phase space Wigner distribution of small-x
gluons and the color dipole scattering amplitude, and we propose studying it experimentally in the hard
diffractive dijet production at the planned electron-ion collider. The angular correlation between the
nucleon recoiled momentum and the dijet transverse momentum probes the nontrivial correlation in the
phase space Wigner distribution. This experimental study not only provides us with three-dimensional
tomographic pictures of gluons inside high energy protons—it gives a unique and interesting signal for
the small-x dynamics with QCD evolution effects.
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Introduction.—There has been strong interest in the
hadron physics community [1–3] in exploring the partonic
structure of the nucleon, aiming particularly at a tomography
picture from which we can image the partons in a three-
dimensional fashion. This can provide fruitful and detailed
information on the subatomic structure of the baryonic
building blocks of the Universe, and it can deepen our
understanding of the strong interaction facts in constructing
the fundamental particles. Among these tomography distri-
butions, the so-called quantum phase space Wigner distri-
butions [4,5] of partons have been reckoned as the mother
distributions of all since they ingeniously encode all quantum
information of how partons are distributed inside hadrons.
The key question now is to find experimental probes to

measure these distributions. The goal of this Letter is to
pioneer this direction by pointing out that we can have
access to the gluon Wigner distributions at a small x. The
proposed new observables will stimulate further develop-
ments from both the experimental and the theoretical side
for the planned electron-ion collider (EIC). In general, the
parton Wigner distributions are not directly measurable in
high energy scatterings. Because of the uncertainty prin-
ciple, they are not positive definite, but only quasiproba-
bilistic. As we will demonstrate later in this Letter, one can
use the diffractive dijet production (or more complicated
processes), which has been a subject of study in the small-x
physics and the generalized parton distribution approach
[6–14], to directly probe the Fourier transform of the gluon
Wigner distribution at the EIC.
The phase space distributions [15] of quarks and gluons

are often used in the small-x literature, and they are believed
to possibly be related to Wigner distributions [4], although
the exact connection was not known. We will show that the
gluonWigner distributions at a small x can be simplified and

written as the Fourier transform of well-known impact
parameter dependent dipole amplitudes, which helps us
to build intimate connections to the small-x factorization
framework developed in the last few decades. Not only will
this provide the motivation to pursue the gluon Wigner
distributions in the future EIC, it will also prompt further
studies to investigate nontrivial correlations in the small-x
dipole scattering amplitude. The latter has become one of the
most important elements of the phenomenological studies in
heavy ion collisions and deep inelastic scatterings [16,17].
One of the nontrivial phenomena is the angular corre-

lation between the traverse momentum of the produced
dijet and the recoiled momentum of the nucleon, which
provides vital information on the gluon Wigner distribu-
tions. It is important to emphasize that this correlation can
help us test and measure the unique features of angular
correlations between the impact parameter and dipole size
predicted by small-x evolutions.
The rest of the Letter is organized as follows. We first

introduce thegluonWigner distributions and take the small-x
limit, which can be connected to the dipole scattering
amplitudes. We then apply these results to demonstrate that
we will be able to observe these novel correlations in the
future EIC. Last, we explore the small-x dynamics by
invoking the analytical solution to the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) equation [18] to show there exist
nontrivial correlations in these gluon Wigner distributions.
We conclude the Letter with a summary.
Gluon Wigner distributions at a small x.—The

parton Wigner distributions are introduced to describe
the quantum phase space distributions of partons inside
the nucleon. They unify the two common languages of
transverse momentum dependent and the generalized
parton distributions in a parton distribution framework.
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We focus on the gluon Wigner distributions. The gluon
Wigner distributions are defined through the following
matrix elements:

xWT
g ðx; ~q⊥; ~b⊥Þ

¼
Z

dξ−d2ξ⊥
ð2πÞ3Pþ

Z
d2Δ⊥
ð2πÞ2 e

−ixPþξ−−iq⊥·ξ⊥

×

�
Pþ Δ⊥

2

����Fþi

�
~b⊥ þ ξ

2

�
Fþi

�
~b⊥ −

ξ

2

�����P −
Δ⊥
2

�
;

ð1Þ
where Fμν represents the field strength tensor, x and
q⊥ the longitudinal momentum fraction and the transverse

momentum for the gluon, and ~b⊥ the coordinate space
variable. The Fourier transform of the Wigner distribution
with respect to the impact parameter b⊥ is also referred
to as the generalized transverse momentum dependent
(GTMD) gluon distribution [19,20]. The gauge links
associated with the gluon fields have been omitted in the
above equation for simplicity (see the discussions below).
In Refs. [21,22], it was demonstrated that TMD gluon

distributions are related to small-x unintegrated gluon dis-
tributions. The Weizsäcker-Williams (WW) and the dipole
gluon distribution used in small-x formalism corresponds
to two gauge invariant but topologically different operator
definitions. In order to pursue deeper connections between
Wigner distributions and small-x impact parameter depen-
dent gluon distributions, we first use the dipole gluon distri-
bution as an example, andwewill comment on the case of the
WW gluon distribution later. Following the convention in
Ref. [23], we write the GTMD dipole gluon distribution as

xGDPðx;q⊥;Δ⊥Þ

¼2

Z
dξ−d2ξ⊥e−iq⊥·ξ⊥−ixP

þξ−

ð2πÞ3Pþ

×
�
PþΔ⊥

2

����Tr½Fþiðξ=2ÞU ½−�†Fþið−ξ=2ÞU ½þ��
����P−Δ⊥

2

�
;

ð2Þ
where U ½�� are the future- (past-) pointing U-shaped
Wilson lines which make the operator gauge invariant. Its
Fourier transform

R ðd2Δ⊥=ð2πÞ2ÞeiΔ⊥·b⊥xGDPðx; q⊥;Δ⊥Þ
can be identified as theWigner distribution xWT

g ðx; q⊥; b⊥Þ.
Following a similar derivation used in Refs. [22–24] in the
small-x limit, which allows us to approximately write
e−xP

þξ− ≃ 1, one can show that Eq. (2) reduces to

xGDPðx;q⊥;Δ⊥Þ

¼ 2Nc

αs

Z
d2R⊥d2R0⊥

ð2πÞ4 eiq⊥·ðR⊥−R0⊥ÞþiðΔ⊥=2Þ·ðR⊥þR0⊥Þð ~∇R⊥ ·
~∇R0⊥Þ

×
1

Nc
hTr½UðR⊥ÞU†ðR0⊥Þ�ix; ð3Þ

where we can recognize the impact parameter dependent
dipole amplitude. Let us define its double Fourier transform:

1

Nc
Tr

�
U

�
b⊥ þ r⊥

2

�
U†

�
b⊥ −

r⊥
2

��

≡
Z

d2q⊥d2Δ⊥e−iq⊥·r⊥−iΔ⊥·b⊥F xðq⊥;Δ⊥Þ: ð4Þ

Then we can succinctly write xGDPðx; q⊥;Δ⊥Þ ¼
ðq2⊥ − Δ2⊥=4Þð2Nc=αsÞF xðq⊥;Δ⊥Þ. Setting r⊥ ¼ 0 in the
above expression, we obtain the normalization condition for
F xðq⊥;Δ⊥Þ as

R
d2q⊥d2Δ⊥e−iΔ⊥·b⊥F xðq⊥;Δ⊥Þ ¼ 1.

Correlated hard diffractive dijet production in deep
inelastic scattering (DIS).—Now let us discuss diffractive
dijet production in electron-ion collisions, which was
studied quite recently in Ref. [25], and demonstrate that
it directly probes the dipole gluon GTMD in the small-x
limit where the quark contribution is negligible. Diffractive
events imply that a color neutral exchange must occur in the
t channel between the virtual photon and the target hadron
over several units in rapidity. Following the same frame-
work developed in Ref. [22], by requiring that the final state
quark-antiquark pair forms a color singlet state, we can
write the cross section for diffractive dijet production as
illustrated in Fig. 1 as follows:

dσγ
�
T
~Aqq̄X

dy1d2k1⊥dy2d2k2⊥
¼ 2Ncαeme2qδðxγ� − 1Þzð1 − zÞ½z2 þ ð1 − zÞ2�

×
Z
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−
~P⊥ − ~q⊥
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�

·

� ~P⊥
P2⊥ þ ϵ2f

−
~P⊥ − ~q0⊥

ðP⊥ − q0⊥Þ2 þ ϵ2f

�
; ð5Þ

for the transversely polarized photon. A similar cross
section formula can be written for the longitudinally

FIG. 1. Diffractive dijet production in electron-ion collisions.
Here, we assume that the incoming virtual photon has only the
longitudinal momentum. The signature of the diffractive process
is the rapidity gap between the produced dijet and the target
hadron, which remains intact.
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polarized photon. In Eq. (5), y1;2 and k1;2⊥ are rapidities
and transverse momenta of the final state quark and
antiquark jets, respectively, defined in the center of mass

frame of the incoming photon and nucleon. ~P⊥ ≡ 1
2
ð~k2⊥ −

~k1⊥Þ represents the typical dijet transverse momentum and
Δ⊥ is the nucleon recoiled momentum. We are interested in
the back-to-back kinematic region for the two final state

jets where jP⊥j ≫ j~k1⊥ þ ~k2⊥j. Suppose ϵ2f ≡ zð1 − zÞQ2

is not too large compared to P2⊥. Then we expect that the
above q⊥ integrals are dominated by the region q⊥ ∼ P⊥
and the cross sections are roughly proportional to
F 2

xðP⊥;Δ⊥Þ for back-to-back dijet configurations. Thus,
the diffractive dijet production will be sensitive to the

correlations between ~P⊥ and ~Δ⊥, as mentioned in Ref. [25],
and our analysis shows that such a measurement gives
experimental access to the gluon Wigner distribution.
Of particular interest is the angular correlation of the

form cos 2ðϕP⊥ − ϕΔ⊥Þ. This originates from the cos 2ϕ
correlation in the GTMD and the Wigner distribution

xGDPðx; ~q⊥; ~Δ⊥Þ ¼ xGDPðx; j~q⊥j; j ~Δ⊥jÞ
þ xGϵ

DPðx; j~q⊥j; j ~Δ⊥jÞ cos2ðϕq⊥ − ϕΔ⊥Þ
þ � � � ; ð6Þ

xWT
g ðx; ~q⊥; ~b⊥Þ ¼ xWT

g ðx; j~q⊥j; j~b⊥jÞ
þ xWϵ

gðx; j~q⊥j; j~b⊥jÞ cos 2ðϕq⊥ − ϕb⊥Þ
þ � � � : ð7Þ

The first terms in the above two equations represent the
azimuthally symmetric distributions, whereas the rest of the
terms stand for the azimuthally asymmetric distributions.
From symmetry considerations (cf. Ref. [20]), one sees that
only the even harmonics cos 2nϕ are allowed. We expect
that the dominant component is the elliptic (n ¼ 1) one, as
shown above, and we call it the elliptic gluon Wigner
distribution or, for short, the elliptic gluon distribution.
With the detector capability at the future EIC [3], we will be

able to identify both ~P⊥ and ~Δ⊥ and measure the angular
correlation between them. The elliptic angular correlation
hcos 2ðϕP⊥ − ϕΔ⊥Þi in particular can be observed in this
process. This is similar to the elliptic flow phenomena
observed in heavy ion collisions.
It is interesting to note that the early studies of diffractive

dijet production in DIS have focused on the cos 2ϕ angular
correlation between the lepton plane and the jet plane,
which has been demonstrated as an important feature of
small-x calculations [7–9]. This cos 2ϕ correlation will
remain in our formalism, too. The combined analyses of
both angular correlations of cos 2ðϕP⊥ − ϕΔ⊥Þ and cos 2ϕ
will provide a unique opportunity to study the gluon
tomography and test the saturation formalism. It was also

pointed out in Ref. [10] that the emission of an additional
gluon can diminish the signal, and this could pose a
challenge in the data analysis at HERA [26] for events
of large diffractive masses (MX) when M2

X ≫ Q2. While
we propose studying a different type of angular correlation
at the EIC, a similar problem may arise and need to
be investigated. Nevertheless, we believe that the case
becomes simpler if we focus on relatively low mass
diffractive events with a large Q2 and Q2 ≃M2

X.
Gluon tomography induced by small-x dynamics.—In

order to gain analytical insights into the distribution

xGDPðx; ~q⊥; ~Δ⊥Þ and to illustrate how the angular corre-
lation arises, let us evaluate it in the BFKL approximation.
Consider the dipole scattering amplitude off a dipole x⊥
(quark at ~x⊥=2, antiquark at −~x⊥=2) evolved up to rapidity
Y ¼ ln 1=x. Define the dipole T matrix in impact parameter
space as ð1=NcÞhtrU½b⊥ þ ðr⊥=2Þ�U†½b⊥ − ðr⊥=2Þ�ix ¼
1 − Tðr⊥; b⊥; YÞ. In the BFKL approximation and in the
regime b⊥; r⊥ ≫ x⊥, T is given by [27–29]

Tðr⊥; b⊥; YÞ ≈
α2s jρjffiffiffi

π
p

ln 16
jρj

½7
2
ᾱsζð3ÞY�3=2

× exp

�
4ᾱsY ln 2 −

ln2 16
jρj

14ᾱsζð3ÞY
�
; ð8Þ

where

jρj2 ≡ x2⊥r2⊥
ðb⊥ þ r⊥

2
− x⊥

2
Þ2ðb⊥ − r⊥

2
þ x⊥

2
Þ2

≈
x2⊥r2⊥

b4⊥ þ r4⊥
16
− b2⊥r2⊥

2
cos 2ϕbr

: ð9Þ

Clearly, one sees that there is a nontrivial angular correlation

between ~b⊥ and ~r⊥. When ~b⊥ is parallel to ~r⊥, the scattering
is stronger than the case when ~b⊥ is perpendicular to ~r⊥.
This is a known phenomenon; see, for example, Ref. [30].
Such a correlation is expected to survive near the nonlinear
saturated regime. Indeed, away from the BFKL saddle point,
the saturation momentum Qs is defined by the condition
Tðr⊥ ¼ 1=Qs; b⊥Þ ¼ const. This leads to

1

jρj2 ≈
b4⊥ þ r4⊥

16
− b2⊥r2⊥

2
cos 2ϕbr

x2⊥r2⊥

����
r⊥¼1=Qs

∼ ef½χðγsÞ�=γsgY; ð10Þ

where χðγÞ≡ ðαsNc=πÞ½2ψð1Þ − ψðγÞ − ψð1 − γÞ� and
γs ≈ 0.628. If we look for a solution in the regime
b⊥ ≫ r⊥ ≃ 1=Qs, we find

Q2
s ∼

x2⊥
b4⊥

ef½χðγsÞ�=γsgY þ cos 2ϕbr

2b2⊥
: ð11Þ

This is consistent with the numerical study of the nonlinear
small-x evolution (e.g., the Balitsky-Kovchegov evolution
[31,32]) in Refs. [33,34], where it was observed that the
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angular correlation exists even when b⊥ and r⊥ are of the
same order. These features should be a guiding principle
when building saturation models with angular correlations.
The elliptic (∼ cos 2ϕ) angular correlation can be seen

also in momentum space. After averaging over the angular
orientation of the target dipole x⊥, we find that the Fourier

transform of Tðr⊥; b⊥; YÞ with respect to ~b⊥ and ~r⊥ is

T ðq⊥;Δ⊥;YÞ

¼ α2sx⊥
ð2πÞ2Δ3⊥

e4ᾱsY ln2

½7
2
ᾱsζð3ÞYπ�3=2

×
Z

π=2

0

dθJ0

�
sinθΔ⊥x⊥

2

�
K0

�
cosθΔ⊥x⊥

2

�

×
Z

1

0

dα
α2ð1−αÞ2 2F1

�
3

2
;
3

2
;1;−

j~q⊥þð1=2−αÞ~Δ⊥j2
Δ2⊥αð1−αÞ

�

ð12Þ
in the high energy limit. Depending on the relative size
of q⊥ and Δ⊥, T ðq⊥;Δ⊥; YÞ can have sizable angular
correlations with only even harmonics. (It is not hard
to show that all odd harmonics vanish.) Note that in
the BFKL approximation, we have xGDPðx; q⊥;Δ⊥Þ ¼
−ðq2⊥ − Δ2⊥=4Þð2Nc=αsÞT ðq⊥;Δ⊥; YÞ for the case with
finite momentum transfer.
In the saturation regime, one can estimate the strength

of the angular correlation from numerical studies of the
Balitsky-Kovchegov equation with impact parameter
dependence [33,34]. We find that it will lead to
hcos 2ðϕP⊥ − ϕΔ⊥Þi asymmetries of a few percent in the
typical EICkinematics.More sophisticated calculations shall
follow for generalizing the saturation models [14,35–37]
to incorporate this particular angular correlation feature.
We leave this for future study. Comparing the theoretical
computations with the future experimental data will provide
us with much more insight on the experimental signature
of small-x dynamics.
Summary and discussions.—To conclude, let us make

some further brief comments on the consequence of this
work. We will leave detailed discussion to a future
publication. (i) Let us comment on the WW gluon
distribution case. Following the same technique used above
for the dipole gluon Wigner distribution, we generalize the
WW gluon distribution at a small x as follows:

xGWWðx; q⊥;Δ⊥Þ

¼ 2

Z
dξ−d2ξ⊥e−iq⊥·ξ⊥−ixP

þξ−

ð2πÞ3Pþ

×

�
Pþ Δ⊥

2

����Tr
�
F

�
ξ

2

�
U ½þ�†F

�
−
ξ

2

�
U ½þ�

�����P −
Δ⊥
2

�
;

ð13Þ
which allows us to find

xGWWðx; q⊥;Δ⊥Þ

¼ 2Nc

αS

Z
d2R⊥
ð2πÞ2

d2R0⊥
ð2πÞ2 e

iq⊥·ðR⊥−R0⊥ÞþiðΔ⊥=2Þ·ðR⊥þR0⊥Þ

×
1

Nc
hTr½i∂iUðR⊥Þ�U†ðR0⊥Þ½i∂iUðR0⊥Þ�U†ðR⊥Þix:

ð14Þ

Because of the known connection between the WW gluon
distribution and color quadrupoles at a small x [22], it is
expected that one needs to generate a color quadrupole at
the amplitude level in order to probe the WW Wigner
distribution. This requires two incoming photons at once,
which produce four-jet diffractive events in the final states.
It seems to be very challenging to measure these types of
events at EIC. Nevertheless, performing such a measure-
ment in ultraperipheral diffractive AA collisions at the LHC
where photons are much more abundant in the wave
function of colliding nuclei is much more likely. (ii) It is
also interesting to note that one can generalize the above
derivation to obtain the linearly polarized part [38–45] of
the WWand the dipole gluon Wigner distribution when the
indices of derivatives are off diagonal, instead of diagonal
as in Eqs. (1) and (2). The cross sections for the dijet and
four-jet productions depend on both the unpolarized and
the linearly polarized gluon distributions, which are related
in the small-x formalism [41,42]. In addition, when
integrating over q⊥ in Eqs. (1) and (2) with off-diagonal
indices, the gluon Wigner distributions will reduce to the
so-called helicity flip gluon generalized parton distributions
(GPDs) (also called gluon transversity), which have been
extensively discussed in the collinear GPD framework
[46–49]. The nontrivial correlations between q⊥ and Δ⊥
play important roles in the integral in obtaining the helicity
flip gluon GPDs. (iii) The extension to the quark Wigner
distribution can be done accordingly. Their contributions
will be dominant in the large- and moderate-x range, where
the small-x approximation breaks down. Therefore, the
differential cross sections will be much more involved in
terms of the quark Wigner distributions compared to the
simple form of Eq. (5). Nevertheless, it is worthwhile to
pursue further studies along the direction of this Letter for
the diffractive dijet production at a large or moderate x.
The parton Wigner distributions, which contain the most

complete information, are the cornerstones of all parton
distributions. We demonstrate that gluon Wigner distribu-
tions are closely related to the impact parameter dependent
dipole and quadrupole scattering amplitudes, and we point
out that they can be measured in diffractive-type events
at EIC and the LHC. The correlated hard diffractive dijet
production in DIS in particular is one of the golden
channels for exploring the gluon Wigner distribution.
The nontrivial correlation encoded in this distribution could
potentially be linked to many observables in high energy
hadronic and nuclear collisions. Further theoretical and
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phenomenological studies shall follow the direction of this
Letter.
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