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A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is
established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed
volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative
argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise
argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the
vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the
same conclusion follows modulo a conjecture about the variation of entanglement entropy.
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Introduction.—When restricted to one side of a spatial
partition, the vacuum state of a quantum field has entropy
because the two sides are entangled. The entanglement
entropy of the restricted state is dominated by the ultra-
violet (UV) field degrees of freedom near the interface, and
hence scales with the area. This is similar to the Bekenstein-
Hawking black hole entropy, A=4L2

p, where A is the
horizon area and Lp ¼ ðℏG=c3Þ1=2 is the Planck length
[1–3]. The similarity of these two “area laws” is striking,
and has led to the idea that black hole entropy is just a
special case of vacuum entanglement entropy [4–9]. To
match the Bekenstein-Hawking entropy, vacuum entangle-
ment entropy should be cut off at the Planck scale.
Considering the gravitational backreaction of vacuum
fluctuations, such a cutoff appears natural [7,10], but it
lies deep in the regime of poorly understood quantum
gravity effects.
Bekenstein defined the generalized entropy Sgen as the

sum of the horizon entropy and the ordinary entropy in the
exterior. If the horizon entropy is indeed entanglement
entropy, then the (fine-grained) generalized entropy is
nothing but the total von Neumann entropy of the quantum
state outside the horizon [9,11,12]. Bekenstein proposed
the generalized second law (GSL) stating that Sgen never
decreases [2]. The GSL has been shown to hold in various
regimes [13], the proofs having been recently strengthened
to apply to rapid changes and arbitrary horizon slices
[14,15]. The validity of the law depends on the Einstein
equation, which relates the curvature—and therefore the
focusing of light rays that determines the change of horizon
area—to the local energy-momentum density of matter.
The GSL thus points to a deep link between vacuum

entanglement and the Einstein equation. The aim of this
Letter is to better understand the nature of this link.
Motivated by the notion of vacuum as an equilibrium state,
I formulate a maximal vacuum entanglement hypothesis
(MVEH): When the geometry and quantum fields are

simultaneously varied from maximal symmetry, the entan-
glement entropy in a small geodesic ball is maximal at fixed
volume.
This is formulated in the context of semiclassical gravity,

i.e., quantum fields on a classical spacetime. As such, it is
predicated on the following assumption: The area density
of vacuum entanglement entropy η is finite and universal.
This assumption is supported by the evidence that horizon
entropy can indeed be identified with entanglement entropy
(see, e.g., [9,16,17] and references therein). However, it
involves UV aspects of quantum gravity that are not
currently understood, so it remains an assumption.
I will argue that the Einstein equation supports the

MVEH and, conversely, that the MVEH implies the
Einstein equation for first-order variations of the local
vacuum state for conformal fields. For nonconformal fields
the result holds modulo a conjecture about the variation of
entanglement entropy to be explained below. It is well
known that diffeomorphism invariance selects the Einstein
equation, at second order in derivatives, as the unique
gravitational field equation in a metric theory. Since the
MVEH is formulated in a diffeomorphism-invariant fash-
ion, it is therefore not surprising that the Einstein equation
would arise. Nevertheless, entropy maximization is quite
different from Hamilton’s principle of stationary action, so
something new is learned here. Moreover, the Newton
constant that appears in the derived Einstein equation—
which is not fixed by diffeomorphism invariance—has
precisely the value required in order for η to correspond to
the Bekenstein-Hawking value, 1=4ℏG. This is a nontrivial
and essential consistency property of the derivation.
Two lines of evidence motivated this Letter. First, the

Einstein equation can be derived as a thermodynamic
equation of state of the vacuum outside a local causal
horizon [18]. That derivation assumes that the entropy
change of an otherwise stationary horizon is given by
δQ=T when a local boost energy δQ crosses the horizon,
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T ¼ ℏ=2π being the Unruh temperature. Second, recent
work invokes AdS=CFT (anti–de Sitter/conformal field
theory) duality, and the thermal nature of CFT vacuum
entanglement entropy, to derive the linearized Einstein
equation for perturbations of AdS spacetime [19–21]. This
approach treats the entropy statistically, rather than thermo-
dynamically, and it concerns entropy of a compact region in
the CFT at one time, rather than following the change of
horizon entropy. The present work combines the local
spacetime setting of the equation of state approach, with the
statistical, compact-region setting of the holographic analy-
sis, but it proceeds directly in spacetime, making no use of
holography.
Area deficit and general relativity.—Einstein’s field

equation,

Gab ¼ 8πGTab; ð1Þ
relates the Einstein curvature tensor Gab to the energy-
momentum tensor of matter, Tab. Central to our story is the
equivalence of (1) to the statement that the surface area
deficit of any small, spacelike geodesic ball of fixed volume
is proportional to the energy density in the ball [22]. We
begin by demonstrating this relation.
At any point o in a spacetime of dimension d, choose an

arbitrary timelike unit vector ua, and generate a (d − 1)-
dimensional spacelike ball Σ by sending out geodesics of
length l from o in all directions orthogonal to ua. The point
o is the center of the ball, and the boundary ∂Σ is the
surface (see the grey region of Fig. 1). Choose a Riemann
normal coordinate (RNC) system based at o, launched from
an orthonormal basis formed by ua and d − 1 spacelike
vectors tangent to Σ. Let the timelike coordinate be x0, and
let the spacelike ones be fxig. The signature of the

spacetime metric is taken here to be ð−þþþÞ, and units
are chosen with c ¼ 1.
We will assume the radius of the ball is much smaller

than the local curvature length,

l ≪ Lcurvature; ð2Þ
and work to lowest nontrivial order in their ratio. The
volume variation at fixed radius, relative to flat space, is
then given by

δVjl ¼ −
Ωd−2ldþ1

6ðd − 1Þðdþ 1ÞR; ð3Þ

whereR ¼ Rik
ik is the spatial Ricci scalar at o [23], and the

area variation of ∂Σ is given by dδV=dl, i.e.,

δAjl ¼ −
Ωd−2ld

6ðd − 1ÞR: ð4Þ

We will also be interested in the area variation at fixed
volume, rather than at fixed geodesic radius. When the
radius of the ball varies, the volume and area variations
have the additional contributions δrV ¼ ld−2

R
δrdΩ and

δrA ¼ ðd − 2Þld−3 R δrdΩ. Choosing
R
δrdΩ so that the

total volume variation vanishes, we obtain the area variation
at fixed volume,

δAjV ¼ δA −
d − 2

l
δV ¼ −

Ωd−2ld

2ðd2 − 1ÞR: ð5Þ

This is smaller by the factor 3=ðdþ 1Þ than the variation at
fixed radius (4).
To connect now with spacetime and the Einstein equa-

tion, note that the spatial Ricci scalar at o is equal to twice
the RNC 00 component of the spacetime Einstein tensor,

R ¼ Rik
ik ¼ R − 2R0

0 ¼ 2

�
R00 −

1

2
Rg00

�
¼ 2G00: ð6Þ

The area deficit (5) can thus also be expressed as

δAjV ¼ −
Ωd−2ld

d2 − 1
G00: ð7Þ

Then, using the Einstein equation (1), we see that the area
deficit is proportional to the energy density,

δAjV ¼ −
8πGΩd−2ld

d2 − 1
T00: ð8Þ

Conversely, this simple geometrical relation contains the
full content of Einstein’s equation, if it holds at all
spacetime points and for all timelike unit vectors.
The evidence that the Einstein equation implies maximal

vacuum entanglement can now be stated in a qualitative,

FIG. 1. Causal diamond, in a maximally symmetric spacetime,
for a geodesic ball Σ of radius l with center o and boundary ∂Σ.
The dashed curves are flow lines of ζ, the conformal Killing
vector field, whose flow preserves the diamond and which
vanishes at the top and bottom vertices and on ∂Σ. The vectors
show ζ at four points of Σ.
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intuitive fashion. Suppose the ball has a Bekenstein-
Hawking entropy A=4ℏG, arising from vacuum entangle-
ment, and we try to increase the entropy by placing an
entangled qubit in the ball. To localize the qubit within a
region of size l we must give it an energy of at least ℏ=l
which, according to (8), will contribute an area deficit of
order ℏG, and hence a surface entropy decrease of order
unity, offsetting the added qubit. It would not help to use a
“highly entropic object” with many internal states, because
the existence of such objects makes its mark in the vacuum
as well, diluting the entropic effect of adding the object to
the ball. Indeed, in the context of the Rindler wedge, it was
argued that δS ≤ δE=T, where T is the Unruh temperature
ℏ=2π and δE is the change of boost Killing energy, since a
thermal state maximizes entropy at fixed energy [34,35].
We now proceed to make this link between the Einstein
equation and maximal vacuum entanglement more precise.
Causal diamond and conformal isometry.—To evaluate

the variation of the entanglement entropy in a spacelike
geodesic ball Σ it is helpful to consider the spacetime region
causally determined by Σ, called the causal diamond DðΣÞ.
In a maximally symmetric spacetime, DðΣÞ is the inter-
section of the future of a past vertex and the past of a future
vertex, and has a conformal isometry and rotational
symmetry in the rest frame defined by these vertices
(see Fig. 1).
The Minkowski line element ds2 ¼ −dt2 þ dr2 þ

r2dΩ2 takes the form ds2 ¼ −dudvþ r2dΩ2 with null
coordinates u ¼ t − r and v ¼ tþ r. The Minkowski
diamond centered on the origin consists of the intersection
of the regions u > −l and v < l. The unique conformal
isometry that preserves the diamond, and is spherically
symmetric, is generated by the conformal Killing vector

ζ ¼ 1

2l
½ðl2 − u2Þ∂u þ ðl2 − v2Þ∂v� ð9Þ

(for a derivation see [23]). Expressed in t and r coordinates,
ζ is given by

ζ ¼ 1

2l
½ðl2 − r2 − t2Þ∂t − 2rt∂r�: ð10Þ

The Lie derivative of the Minkowski metric along ζ is

Lζηab ¼ −ð2t=lÞηab: ð11Þ

The vector ζ is tangent to the null generators on the past and
future null boundaries of the diamond, so those boundaries
are conformal Killing horizons [36]. They meet at the ball
boundary ∂Σ, where ζ vanishes, so ∂Σ is a bifurcation
surface. The surface gravity κ of a conformal Killing
horizon is well defined by the equation ∇aζ

2 ¼ −2κζa
[37], and with the normalization of ζ in (9) it is equal
to unity.

Entanglement entropy of a diamond.—The entanglement
entropy in a diamondDðΣÞ is the same as that in Σ. Under a
simultaneous variation of the geometry and the state of the
quantum fields, ðδgab; δjψiÞ, the diamond entanglement
entropy variation will consist of two contributions, a state-
independent UV part δSUV from the area change induced
by δgab, and a state-dependent IR part δSIR from δjψi.
As mentioned above, we are assuming that, as a result of

the UV physics, the entanglement entropy in a spatial
region is finite in any state, with a leading term ηA. Here A
is the area of the boundary of the region and η is a universal
constant with dimensions ½length�2−d. The scaling with area
is natural in any theory with a large density of states at short
distances. The assumption that η is universal is motivated
by the idea that the UV structure of the vacuum is common
to all states in the class being considered. (This involves an
implicit choice of “conformal frame” [38] for the metric,
namely, the one for which η is constant in spacetime.
This metric turns out to satisfy the Einstein equation, so this
frame is the so-called “Einstein frame.”) Under this
assumption, when the geometry is varied, the contribution
to the entanglement entropy in Σ from the UV degrees of
freedom near the boundary ∂Σ changes by an amount

δSUV ¼ ηδA: ð12Þ
The total entropy variation will thus be given by

δStot ¼ ηδAþ δSIR: ð13Þ

If η ¼ 1=4ℏG, (12) coincides with the variation of
Bekenstein’s generalized entropy, here interpreted as sim-
ply the total entropy in the diamond. The MVEH implies
that the total entropy variation (13) is zero at first order,
and negative for finite variations, when comparing to a
maximally symmetric spacetime with the volume of Σ
held fixed.
To motivate this equilibrium condition, we first recall

that, for ordinary thermodynamic systems in equilibrium,
the Helmholtz free energy F ¼ E − TS is minimized at
fixed volume. The MVEH is analogous, but with the
additional feature that the energy vanishes. That the free
energy of a diamond has no energy term can be motivated
by comparison with de Sitter spacetime, and the restriction
to fixed volume arises from the fact that the diamond
has a conformal Killing vector rather than a true Killing
vector [23].
Our next step is to evaluate δSIR. The vacuum state of

any QFT, restricted to the diamond, can be expressed
(formally) as a thermal density matrix,

ρ ¼ Z−1 expð−K=TÞ; T ¼ ℏ=2π; ð14Þ

where K is the “modular Hamiltonian.” The temperature
T ¼ ℏ=2π is factored out here so that K will be the
generator of Lorentz boosts, i.e., hyperbolic angle shifts,
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at the edge of the diamond. For an infinite diamond that
coincides with the Rindler wedge in Minkowski space, T is
the Unruh temperature [39,40].
Because ρ in (14) has the form of a thermal state, it

minimizes the modular free energy,

FK ¼ hKi − TS; ð15Þ

where the brackets denote quantum expectation value and
S ¼ −Trρ ln ρ is the von Neumann entropy. The variation
δFK must therefore vanish for any small variation δρ of the
state, i.e.,

δS ¼ 2π

ℏ
δhKi: ð16Þ

This is just the usual Clausius relation for a “thermal”
state (14).
In general K in (14) is not a local operator, and does not

generate a geometric flow. For a CFT, however, K is equal
to Hζ, the Hamiltonian generating the flow of the con-
formal boost Killing vector (9) [41]. (This result is
conformally related to the better-known version that holds
for any Poincaré invariant QFT restricted to the Rindler
wedge [42].) That is, Hζ is given by the integral

Hζ ¼
Z
Σ
TabζbdΣa: ð17Þ

If the quantum field state is varied away from the vacuum,
with an excitation length scale much longer than the
diamond size,

l ≪ Lexcitation; ð18Þ

then hTabi can be treated as constant, and using the Killing
field (9) we find

δhHζi ¼
Ωd−2ld

d2 − 1
δhT00i: ð19Þ

If the matter field is not conformal, K is not given by
(17), and we cannot directly use (19). However, suppose
that the matter is described by a QFTwith a UV fixed point,
so it is asymptotically conformal at short distances, and
that, in addition to (18), the diamond is much smaller than
any length scale in the QFT,

l ≪ LQFT: ð20Þ

Then we conjecture—and we shall assume—that δhKi has
the form of (19) with an additional term δX that is a
spacetime scalar,

δhKi ¼ Ωd−2ld

d2 − 1
ðδhT00i þ δXÞ: ð21Þ

(The common coefficient is factored out to simplify later
expressions.) Calculations indicate that for a class of
theories and states, this is the case [43,44], although in
general δX may carry l dependence and can dominate at
small l. (In a previous draft of this Letter, I had conjectured
that X ¼ −1=dhTi, so that what appeared in δhKiwould be
just the trace-free part of hTabi.) Note that the relation (21)
refers only to the expectation value, and only to lowest
order in the radius of the ball.
Equilibrium and the Einstein equation.—We now pos-

tulate that a small diamond is in equilibrium if the quantum
fields are in their vacuum state, and the curvature is that of a
maximally symmetric spacetime (MSS) [Minkowski or
(anti)–de Sitter]. Any MSS seems an equally good candi-
date, so we will regard the curvature scale of the MSS as a
local state parameter that is effectively constant in a small
diamond but may depend on the diamond.
The Einstein tensor in a MSS is GMSS

ab ¼ −λgab, with λ a
curvature scale. When the metric is varied away from the
MSS, the area variation at fixed volume is obtained to
lowest order in curvature by replacing G00 in (5) with
G00 −GMSS

00 , which yields

δAjV;λ ¼ −
Ωd−2ld

d2 − 1
ðG00 þ λg00Þ: ð22Þ

The variation of the total diamond entropy (13) away
from the equilibrium can now be written using (22), (16),
and (21),

δStotjV;λ ¼ ηδAjV;λ þ
2π

ℏ
δhKi ¼ Ωd−2ld

d2 − 1

×

�
−ηðG00 þ λg00Þ þ

2π

ℏ
ðδhT00i þ δXÞ

�
: ð23Þ

The Einstein tensor should presumably be understood here
as a quantum expectation value hGabi, since the entropy
that is maximized is, by definition, an expectation value. In
using (21) for the matter entanglement variation, we are
neglecting corrections that would come from the curvature
of the MSS, since those would be of higher order.
The requirement that the variation (23) vanishes at all

points and with all timelike unit vectors implies a tensor
equation,

Gab þ λgab ¼
2π

ℏη
ðδhTabi þ δXgabÞ: ð24Þ

The divergence of this equation, together with the Bianchi
identity and local conservation of energy, ties λ to δX via

λ ¼ 2π

ℏη
δX þ Λ; ð25Þ

where Λ is a spacetime constant. Had we not allowed for
the MSS curvature scale λ in the equilibrium state, (25)
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would have implied the unphysical restriction that the
scalar term δX be constant. Note also that if δX has l
dependence then so does λ.
When (25) is substituted back into (24) we arrive at

Gab þ Λgab ¼
2π

ℏη
δhTabi: ð26Þ

This is Einstein’s equation with an undetermined cosmo-
logical constant Λ, which evidently must be independent of
l, and with Newton’s constant defined by

G ¼ 1

4ℏη
: ð27Þ

The area density of entanglement entropy η and Planck’s
constant thus determine the gravitational coupling strength.
Stronger vacuum entanglement implies weaker gravity, i.e.,
greater spacetime rigidity. Note the crucial consistency:
When expressed using G, the surface entropy ηA is the
Bekenstein-Hawking entropy A=4ℏG. The coefficient
would have been off by the factor ðdþ 1Þ=3 had we used
the area variation at fixed radius (4) rather than at fixed
volume (5).
Discussion.—We have shown, given our assumptions,

that the semiclassical Einstein equation holds, for first-
order variations of the vacuum, if and only if the entropy in
small causal diamonds is stationary at constant volume,
when varied from a maximally symmetric vacuum state of
geometry and quantum fields. We assumed the diamond
size l is much smaller than the local curvature length, the
wavelength of any excitations of the vacuum, and the scales
in the matter field theory, but much larger than the UV scale
at which quantum gravity effects become strong. Our
entanglement variation assumption for nonconformal mat-
ter (21) concerns only standard QFT, and is either true
or false.
Strictly speaking, the first-order variation refers to the

derivative with respect to a parameter labeling the state,
evaluated at the vacuum. To be physically applicable,
however, the result should apply to finite but small
variations. The example of a coherent state reveals a
challenge in this regard [45]: Such a state can have nonzero
energy density while leaving entanglement entropy
unchanged [46,47]. That is, not all energy registers as a
change of entanglement. This is consistent with the
hypothesis of maximal vacuum entanglement, although
the Einstein equation implies that the entropy has decreased
—relative to vacuum—by more than it needs to in order to
satisfy the hypothesis. Unless a further consequence of that
hypothesis is found, or the hypothesis is refined and
strengthened in some way, the Einstein equation does
not appear to follow from it in all generality.
We close with some questions and remarks concerning

the derivation and its implications.

(i) Do graviton fluctuations contribute to the entangle-
ment entropy? The UV part of the entanglement entropy
S ¼ ηA is inscrutable at this level, and the IR part does not
include gravitons. Since the diamond is taken much smaller
than the wavelength of any ambient gravitons, they have no
gauge-invariant meaning in the diamond. In the RNC gauge
they are absent at first derivative order. Moreover, the full,
nonlinear Einstein tensor already appears on the geometric
side of the equation, so it would be double counting to
include any graviton energy.
(ii) Can a gravitational field equation with higher

curvature corrections be derived along these lines?
Maybe. We neglected terms of order l=Lcurv in the
geometry calculations, whereas a next-higher-curvature
correction to the field equation might be of order
ðl1=LcurvÞ2, where l2

1 is the relative coefficient of the
curvature squared term in the action. To capture this within
our approximation would require l=l1 < l1=Lcurv. The
right-hand side is presumably less than unity, in order for
higher-curvature terms to not dominate, so the diamond
would have to be taken smaller than l1. If, say, l1 were the
string length, would classical geometry and quantum field
theory apply at that scale? Probably not. On the other hand,
perhaps with improved accuracy of the geometric analysis,
and the inclusion of subleading UV terms in the entangle-
ment entropy, one could consistently capture higher-
curvature corrections using a diamond larger than l1.
(iii) A derivation of Einstein’s equation invoking a

quantum limit to measurements of the spacetime geometry
of small causal diamonds was given in Ref. [48]. How are
the assumptions used there related to those made here?
(iv) According to our derivation the Einstein equation is

a property of vacuum equilibrium. Does this suggest how to
include nonequilibrium effects?
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