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We realized a quantum geometric “charge” pump for a Bose-Einstein condensate (BEC) in the lowest
Bloch band of a novel bipartite magnetic lattice. Topological charge pumps in filled bands yield quantized
pumping set by the global—topological—properties of the bands. In contrast, our geometric charge pump
for a BEC occupying just a single crystal momentum state exhibits nonquantized charge pumping set by
local—geometrical—properties of the band structure. Like topological charge pumps, for each pump cycle
we observed an overall displacement (here, not quantized) and a temporal modulation of the atomic wave
packet’s position in each unit cell, i.e., the polarization.
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Ultracold atoms in optical lattices provide a unique
setting for experimentally studying concepts that lie at
the heart of theoretical condensed matter physics, but are
out of reach of current condensed matter experiments.
Here, we focus on the connection between topology,
geometry, and adiabatic charge pumping [1–7] for Bose-
Einstein condensates (BECs) in cyclically driven lattice
potentials.
Particles in periodic potentials form Bloch bands with

energy ϵnðqÞ and eigenstates jΨnðqÞi ¼ expðiqx̂ÞjunðqÞi
labeled by the crystalmomentumq alongwith the band index
n. The states juni retain the underlying periodicity of the
lattice, set by the unit cell size a. Motion in lattices is
conventionally understood in terms of these bands: metals
arematerialswith partially filled bands,while insulators have
completely filled bands. In this context, a topological charge
pump is a counterintuitive device, where charge motion—
conduction—accompanies the adiabatic and cyclic drive of
an insulating lattice’s parameters. Thouless showed that this
conduction is quantized, completely governed by the band
topology [8,9]. Although various charge pumps have been
realized in condensed matter devices—such as modulated
quantum dots [10–12], one-dimensional (1D) channels
driven by surface acoustic waves [13], and superconducting
qubits [14]—Thouless pumps remain unrealized in con-
densed matter settings but have been demonstrated in recent
experiments with cold-atom insulators [15,16].
Here, we break from this established paradigm for

insulators and create a quantum charge pump for a BEC
in a 1D lattice [17–19] occupying a single crystal momen-
tum state q. This charge pump gives nonquantized motion
sensitive to the Berry curvature at q integrated over the
whole pump cycle, a local geometric quantity, rather than a
global topological quantity. Berry curvatures play an
important role in condensed matter systems. An iconic

example is the integer quantum Hall effect, where the
electrons acquire an anomalous transverse velocity propor-
tional to the Berry curvature and the quantized Hall
conductance is given by the Berry curvature integrated
over the whole two-dimensional (2D) Brillouin zone (BZ)
[20]; recent cold-atom experiments in 2D have measured
such curvatures integrated over part [21,22] or all [23] of
the BZ. In an analogous way, 1D lattice systems, driven
cyclically in time t, have a generalized Berry curvature
defined on the 2D effective BZ in q, t space. This curvature
is the source of an anomalous velocity [24], utilized to drive
an adiabatic quantum pumping process.
The Rice-Mele model [25–28] of a bipartite lattice with a

unit cell consisting of A and B sites is the paradigmatic
system for understanding quantum pumps. The
Hamiltonian for this tight-binding model is

ĤRM ¼ −
X

j

½ðtþ δtÞb̂†j âj þ ðt − δtÞâ†jþ1b̂j þ H:c:�

þ Δ
X

j

ðâ†j âj − b̂†j b̂jÞ; ð1Þ

where â†j and b̂†j describe the creation of a particle in unit
cell j and sublattice site A or B, respectively. The nominal
tunneling strength t is staggered by δt, and the sublattice
sites are shifted in energy by Δ.
We investigated quantum pumping in a novel 1D (along

ex) bipartite magnetic lattice (building on Refs. [29,30])
that in effect allowed independent control of t, δt, andΔ. As
shown in Figs. 1(a) and 1(b), our magnetic lattice for 87Rb
arose from the interplay of one rf and two Raman fields that
coupled the jf ¼ 1;mF ¼ �1; 0i “spin” states comprising
the f ¼ 1 ground state hyperfine manifold, which were
Zeeman split by ℏωZ. The natural units of momentum and
energy are given by the single photon recoil momentum
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ℏkR¼2πℏ=λR and its corresponding energy ER¼ℏ2k2R=2m,
where m is the atomic mass. In the frame rotating at the rf
frequency δω and under the rotating wave approximation,
the combined rf-Raman coupling lead [31] to the overall
Hamiltonian

Ĥ ¼ ℏ2k̂2x
2m

þ Ωðx̂Þ · F̂þ ĤQ; ð2Þ

where F̂ is the total angular momentum vector operator. We
interpret Ωðx̂Þ ¼ ½Ωrf cosðϕÞ þ Ω̄ cosð2kRx̂Þ;−Ωrf sinðϕÞ−
δΩ sinð2kRx̂Þ;

ffiffiffi
2

p
δ�= ffiffiffi

2
p

as a spatially periodic effective
Zeeman magnetic field, in which Ωrf is the rf coupling
strength; Ω̄ ¼ Ωþ þ Ω− and δΩ ¼ Ωþ −Ω− are derived
from the individual Raman coupling strengths Ω�; δ ¼
δω − ωZ is the detuning from Raman-rf resonance; and ϕ is
the relative phase between the rf and Raman fields.
Additionally, HQ ¼ −ϵðℏ2Î − F̂2

zÞ=ℏ describes the quad-
ratic Zeeman shift, where Î is the identity operator.
This spatially varying effective magnetic field produces a

1D bipartite lattice [2,32] with lattice constant a ¼ λR=2
and with adiabatic (Born-Oppenheimer) potentials depicted
in Fig. 1(c). This magnetic lattice is most easily concep-
tualized for small δΩ: the Ω̄ cosð2kRx̂Þ term provides

periodic potentials for the jmx ¼ �1i states spatially
displaced from each other by a=2 [dashed curves in
Fig. 1(c)]; the resulting mx ¼ �1 sites are then staggered
in energy, giving Δ ≈ Δmax cosðϕÞ, with Δmax ¼ Ωrf=

ffiffiffi
2

p
.

The Ωy term couples these sublattices together: the rf
term −Ωrf sinðϕÞ generates constant height barriers
(largely specifying t), which become staggered by the
−δΩ sinð2kRx̂Þ contribution (largely specifying δt).
Figure 1(d) plots the energies of the resulting lowest two

bands as a function of ϕ (modulating Δ cosinusoidally).
Although our lattice is not in the tight-binding limit, the
band structure qualitatively matches that of the Rice-Mele
model. In the remainder of this Letter, we focus on the
lowest band n ¼ 0 and henceforth omit the band index.
As illustrated by the shading in Fig. 1(c), in each unit cell

the sublattice sites are labeled by their F̂x spin projection
with the jmx ¼ −1i site on the left and jmx ¼ þ1i site on
the right. To confirm this, we adiabatically loaded
jmz ¼ −1i BECs into the lattice’s ground state by simul-
taneously ramping the detuning from 5ER to 0 while
ramping on the coupling fields in 10 ms. Following
preparation, our measurement sequence began with a
π=2 spin rotation along ey, allowing us to measure the
eigenstates of F̂x in our F̂z measurement basis. We
achieved this π=2 rotation (rot) with a 44 μs pulse from
an additional rf field with phase ϕrot ¼ π=2 and strength
ℏΩrf;rot ¼ 2.2ER, applied while the Raman coupling was
greatly reduced (Ω̄ ≪ Ωrf;rot) and the lattice rf coupling was
off (Ωrf ¼ 0). We then abruptly removed the remaining
control fields along with the confining potential and
absorption imaged the resulting spin-resolved momentum
distribution after a 20 ms time-of-flight period in the
presence of a magnetic field gradient along ey.
Figure 2 shows the measured F̂x spin composition [33]

and magnetization for adiabatically loaded BECs as a
function of ϕ with δΩ ¼ 0. Because ΔðϕÞ controls the
relative depth of the jmx ¼ �1i wells, we observe ground
state spin populations that follow this “tilt.” For example,
when ϕ ¼ 0 or π the double well is strongly tilted and we
observe the near perfect spin magnetization, consistent with
atoms residing in the individual sublattices; in contrast,
when ϕ ¼ π=2, the double wells are balanced and we
observe equal populations in each jmxi state as expected for
equal occupancy of both sublattices. Thus, the magnetiza-
tion [Fig. 2(b)] measures the mean atomic position within
each unit cell, i.e., the polarization.
Having constructed a physical realization of the Rice-

Mele model, and demonstrated the requisite control and
measurement tools, we now turn our attention to topological
and geometrical charge pumping. These fundamentally
quantum mechanical effects rely on the canonical commu-
tation relation between position and momentum. Consider
a finite wave packet with a center of mass (c.m.) position
hxi ¼ hΨjx̂jΨi, subject to a lattice Hamiltonian Ĥ that is

FIG. 1. Bipartite magnetic lattice. [(a) and (b)] Dipole trapped
87Rb BECs subject to a bias magnetic field B0ez had a
Zeeman splitting ωZ=2π ¼ 0.817 MHz and a quadratic shift
ℏϵ ¼ 0.03ER. These BECs were illuminated by four Raman
beams and an rf magnetic field. Each of the two Raman couplings
(strengthsΩ�) was derived from two cross-polarized Raman laser
beams with frequency components ω and ωþ δω. (c) Adiabatic
potentials colored according to hmxi computed for ℏðΩ̄;Ωrf ; δÞ ¼
ð6; 2.2; 0ÞER, δΩ=Ω̄ ¼ −0.1, and ϕ ¼ π=4. The dashed curves
plot the�ℏΩx contributions to the potential experienced by states
jmx ¼ �1i. (d) Lowest two energy band energies plotted as a
function of ϕ, otherwise with the same parameters as (c).
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adiabatically modulated with period T, i.e., ĤðtÞ ¼
Ĥðtþ TÞ. After one cycle, any initial crystal momentum
state is transformed, jΨðqÞi → exp½iγðq̂Þ�jΨðqÞi, at most
acquiring a phase, where q̂ is the crystal momentum
operator; this defines the single-period evolution operator
ÛT ¼ exp½iγðq̂Þ�. The time-evolved position operator
Û†

Tx̂ÛT ¼ x̂ − ∂ q̂γðq̂Þ is displaced after a single pumpcycle.
The displacement is particularly simple in two limits:

when just a single crystal momentum state is occupied or
when every crystal momentum state in the BZ,
−π=a ≤ q < π=a, is occupied with equal probability. As
for our BEC, when a single jq0i state is occupied the
displacement is Δxðq0Þ ¼ −∂qγðqÞjq0 . Both the dynamical
(D) phase γDðqÞ ¼ −ϵ̄ðqÞT=ℏ from the time-average energy
ϵ̄ðqÞ and the geometric Berry (B) phase γBðqÞ ¼
i
R
T
0 huj∂tuidt contribute to γðqÞ ¼ γDðqÞ þ γBðqÞ. In agree-

ment with conventional descriptions [18,24,27], this predicts
a mean velocity v̄ðqÞ ¼ ∂qϵ̄ðqÞ=ℏ − T−1

R
T
0 Fðq; tÞdt. The

first term is the usual group velocity and the second term—
the anomalous velocity—derives from the Berry curvature
Fðq; tÞ ¼ iðh∂quj∂tui − h∂tuj∂quiÞ. In our experiment, the
BEC occupied the minimum of ϵðq; tÞ at q ¼ 0 during the
whole pump cycle giving ∂qϵ̄ðqÞ ¼ 0, so only the geometric
phase γBðqÞ contributed to the per-cycle displace-
ment Δxðq ¼ 0Þ ¼ −

R
T
0 Fðq ¼ 0; tÞdt.

In the contrasting case of a filled band, the average group
velocity is also 0 and the displacement is Δx ¼
−a

R
BZ ∂qγBðqÞdq=2π; this is often expressed as Δx ¼

a
R
T
0 ∂tγZakðtÞdt=2π. The Zak phase γZak¼ i

R
BZhuj∂quidq,

a topological property of 1D bands, is the Berry’s phase
associated with traversing the 1D BZ once, in the same way
that γBðqÞ is a Berry’s phase taken over a pump cycle.

Our lattice’s Zak phase is plotted in Fig. 3(a); this Zak
phase is qualitatively indistinguishable from that of the
Rice-Mele model, with singularities at ϕ ¼ �π=2 and
δΩ ¼ 0, signaling topological phase transitions across
these points. For filled band experiments, pumping trajec-
tories encircling these points give quantized charge pump-
ing [15,16]. Figure 3(b) shows the richly structured Berry
curvature Fðq ¼ 0;ϕÞ relevant to our experiment, which is
explored next.
For our charge pump experiments, we linearly ramped

the pump control parameter ϕðtÞ ¼ 2πt=T, effectively
modulating the lattice potential in two qualitatively differ-
ent regimes (separated by a critical jδΩ=Ω̄j ≈ 0.63). In the
first [Fig. 3(c), left panel] the sublattice sites rise and fall
but the local potential minima are essentially fixed in space;
in the second [Fig. 3(c), right panel] each minimum is only
present for part of the pump cycle (the potential appears to
“slide” by �a per cycle). As these schematics imply, the
associated pumping process gives either no displacement or
a quantized per-cycle displacement �a for classical tra-
jectories [34]. In quantum systems, however, geometrical

FIG. 2. Ground state spin projections. (a) Ground state spin
projections at various ϕ along with the predicted populations for
ℏðΩ̄; δΩ;Ωrf ; δÞ ¼ ð4.4; 0; 2.2; 0ÞER. The associated adiabatic
potentials [insets in (b)] have minima with spin projection
following the observed population’s trends. (b) Magnetization
derived from data in (a).

FIG. 3. Band geometry and topology computed for
ℏðΩ̄;Ωrf ; δÞ ¼ ð6; 2.2; 0ÞER. [(a) and (b)] Zak phase and q ¼ 0

Berry curvature showing the dependence on both δΩ=Ω̄ and ϕ. In
(b), the arrows show experimental charge pump trajectories in
Fig. 4(b). (c) Adiabatic potentials (displaced vertically for clarity)
computed for a range of ϕ constituting a complete pump cycle at
δΩ=Ω̄ ¼ −0.4 (left panel) and −0.8 (right panel). Filled circles
mark the local energy minima.
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pumping is controlled by the Berry curvature, giving
nonquantized per-cycle displacements that can, in princi-
ple, take on any value.
We studied adiabatic charge pumping in this lattice in

two ways: in the first we observed the F̂x magnetization,
giving the polarization within the unit cells, and in the
second we directly measured the displacement Δx of our
BEC. In both cases we loaded into the lattice’s ground state
and linearly ramped ϕ ¼ 2πt=T, driving the Hamiltonian
with period T [34]. As shown in Fig. 4(a), the magneti-
zation oscillated with the T ¼ 2 ms period, demonstrating
the periodic modulation of polarization per cycle. In good
agreement with our data, the solid curves in Fig. 4(a) show
the predicted behavior given our known system parameters.
This agreement persists to long times: for example, after 50
pumping cycles (for t ¼ 100 ms to 110 ms) the contrast is
unchanged, confirming the adiabaticity of the process [34].
Lastly, we performed a charge pumping experiment by

directly measuring the cloud’s position in situ for a range
of δΩ=Ω̄. We obtained in situ density distributions
using partial-transfer absorption imaging [35] in which
≈6.8 GHz microwave pulses transferred ≈5% of the atoms
from jf;mzi ¼ j1;−1i to j2; 0iwhere they were absorption
imaged. This technique allowed us to repeatedly measure
the in situ density distribution for each BEC. Each observed
displacement was derived from differential measurements
of the cloud position taken just before and just after the
pumping process, rendering our observations insensitive to
micron-level drift in the trap position between different
realizations.
Figure 4(b) shows data taken for δΩ=Ω̄ ¼ 0.7, 0, and−0.7

along trajectories i, ii, and iii, respectively, with both
increasing and decreasing phases. Our data display two
expected symmetry properties. First, since the displacement
Δxðq ¼ 0Þ ¼ −

R
Fðq;ϕÞdϕ depends on the sign of the

acquired phase, the direction of motion is reversed when the
ramp direction is inverted. Second, as shown in Fig. 3(b),

Fðq ¼ 0;ϕÞ is an odd function of δΩ=Ω̄, so the direction of
motion is also reversed when δΩ=Ω̄ → −δΩ=Ω̄. Thus,Δx is
an odd function of both ϕ and δΩ=Ω̄, and as expected we
observe no motion when δΩ=Ω̄ ¼ 0.
The displacement was markedly nonlinear when the

pumping time became comparable to our trap’s 80 ms
period, showing the influence of the confining potential
[36]. We included the harmonic potential in our real-space
simulations by directly solving the time-dependent
Schrödinger equation for our system [37]. The simulated
results [Fig. 4(b), solid curves] agree with our observations.
To extract the per-cycle displacement due to geometric
pumping, we fit the sinusoidal predictions of our model to
each data trace, with only the overall amplitudes and a
small vertical offset as free parameters, giving the short-
time per-cycle displacement [34]. Figure 4(c) shows these
per-cycle displacements for a range of Raman imbalances.
The in situ cloud typically had a Thomas-Fermi radius of

30 μm, corresponding to a small momentum width of
0.004kR for our BEC. We estimated the thermal fraction
to be ≈5% given by our ≈20 nK temperature (momentum
width of 0.24kR). Moreover, the per-cycle displacement is
nearly independent of q for jqj < 0.25kR [34]. These allow
us to compare the data with the expected displacement from
integrating q ¼ 0 Berry curvature [Fig. 4(c), solid line],
showing an excellent agreement and confirming the geo-
metric origin of our quantum charge pump.
Our magnetic lattice enables new experiments with 1D

topological lattices. Berry curvatures at q ≠ 0 can be
probed by performing the charge pump pairwise at �jqj
(for example, prepared via Bloch oscillations [38]). The
dynamical phases in these cases are opposite and therefore
cancel while Berry curvatures (even in q) contribute
equally to the displacements [34]. Furthermore, protected
edge states, a hallmark of topological systems, are present
at the interface between regions characterized by different

FIG. 4. Geometric charge pumping. (a) Magnetization measured while linearly ramping ϕ with period T ¼ 2 ms, along with the
prediction for ℏΩ̄ ¼ 6.38ð2ÞER, ℏδΩ ¼ 4.50ð2ÞER, and ℏΩrf ¼ 2.20ð3ÞER. (b) Displacement plotted versus ϕ=2π (number of pump
cycles). Trajectories i–iii are taken at δΩ=Ω̄ ¼ 0.7, 0, and −0.7, respectively; in each case ℏΩ̄ ≈ 6ER and ℏΩrf ¼ 2.20ð3ÞER. Solid
curves: simulation of a charge pump in the trap. The small displacement near ϕ ¼ 0 is introduced by our loading procedure.
(c) Measured displacement Δx per pump cycle (symbols), along with the prediction obtained by integrating the Berry curvature over our
pumping trajectory (solid curve). The uncertainty bars represent the 95% confidence interval.
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topological invariants [39–41]. Since in our lattice the
topological index is set by the rf phase, a bulk topological
junction can be generated by replacing the rf field with an
additional copropagating pair of Raman laser beams in
which just one beam has an abrupt π phase shift in its
center. This provides a static model of the soliton excitation
mode in polyacetylene [25,42]. Terminating our lattice with
hard-wall boundaries gives rise to similar end states—
somewhat analogous to Majorana fermions in 1D topo-
logical superconductors [40,43]—with a spin character.
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