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We report ac susceptibility, specific heat, and neutron scattering measurements on a dipolar-coupled
antiferromagnet LiYbF4. For the thermal transition, the order-parameter critical exponent is found to be
0.20(1) and the specific-heat critical exponent −0.25ð1Þ. The exponents agree with the 2D XY=h4
universality class despite the lack of apparent two-dimensionality in the structure. The order-parameter
exponent for the quantum phase transitions is found to be 0.35(1) corresponding to ð2þ 1ÞD. These results
are in line with those found for LiErF4 which has the same crystal structure, but largely different TN , crystal
field environment and hyperfine interactions. Our results therefore experimentally establish that the
dimensional reduction is universal to quantum dipolar antiferromagnets on a distorted diamond lattice.
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Critical phenomena near continuous phase transitions
do not depend on the microscopic details of systems but
only on the symmetry of the order parameter and inter-
actions and the spatial dimensionality [1]. Such univer-
sality for classical thermal transitions has been thoroughly
demonstrated with various physical systems over
decades while nowadays a similar line of effort is actively
pursued for zero-temperature quantum transitions [2–4].
Comparing experimental observations with theoretical
models has been particularly successful for magnetic
insulators that could be simply modeled by short-ranged,
exchange-coupled spins on a lattice. Although dipolar
interactions appear to be more classical than their
exchange-coupled counterparts, it has been shown that on
a square or diamond lattice, quantum fluctuations can map
long-ranged dipolar interactions to a two-dimensional
Ising model [5–7]. The LiRF4 family is special as the
rare-earth ions are arranged in a slightly distorted dia-
mondlike structure making them intriguing to study in
relation to order by disorder phenomena [8].
For the case of a dipolar-coupled Ising ferromagnet, the

theoretical upper critical dimension D� ¼ 3 and the mean-
field calculations actually apply quite well as shown, for
instance, in LiHoF4 [9]. This is despite the significant role
of hyperfine interactions around the quantum phase tran-
sition [10,11]. Recently, quantum and classical critical
properties of a long-range, dipolar-coupled antiferromagnet
could be investigated for the first time with LiErF4 [12]. It
was discovered that the specific-heat and order-parameter
critical exponents, α ¼ −0.28ð4Þ and βT ¼ 0.15ð2Þ, for the

thermal transition are totally different from the mean-field
predictions of α ¼ 0 and βT ¼ 0.5. Instead, these exponent
values suggest a 2D XY=h4 universality class, despite the
absence of any apparent two dimensionality in the structure
of the system. This intriguing dimensional reduction was
further corroborated by the βH ¼ 0.31ð2Þ for the quantum
transition induced by applying a longitudinal magnetic
field, which corresponds to ð2þ 1ÞD, as expected from
quantum-classical mapping [4]. Whether the dimensional
reduction is universal to all dipolar quantum antiferromag-
nets or is special to LiErF4, due to rather close (3 meV)
higher-lying crystal-field levels or weak hyperfine inter-
actions, is to date unknown.
Among the LiRF4 family, where R is a rare-earth ion,

LiYbF4 has been suggested to be an alternate candidate for
a dipolar antiferromagnet [13]. However, there are marked
differences between LiYbF4 and LiErF4. First, the elec-
tronic level scheme is quite different with crystalline
electric field split first excited state an order of magnitude
higher in LiYbF4. Second, in Yb3þ, there are two stable
isotopes of Yb with strong hyperfine coupling −11.0 μeV
for 171Yb (14.3%) and −3.0 μeV for 173Yb (16.1%). LiErF4
contains 167Er (22.8%) whose hyperfine coupling strength
is weak, 0.5 μeV. Therefore, LiYbF4 could serve as an
excellent candidate to test for the robustness of dimensional
reduction in dipolar antiferromagnets arranged on a dis-
torted diamond lattice.
In this Letter, we present ac susceptibility, specific heat,

and neutron scattering measurements on LiYbF4 and
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demonstrate the thermal and quantum critical properties.
The field-temperature ðH-TÞ phase diagram is first mapped
out and a bilayered XY antiferromagnetic order for the
ground state is identified. Then we show that the critical
exponents α, βT , and βH support the dimensional reduction
as a universal feature of quantum dipolar antiferromagnets.
Large, high-quality single crystals were obtained from a

commercial source. In order to reduce neutron absorption,
the samples were enriched with the 7Li isotope. The
ac susceptibility χðT;HÞ was measured on a single crystal
using a mutual inductance method where the excitation
field was 40 mOe and the excitation frequency 545 Hz. The
specific heatCpðTÞwas measured by the relaxation method
in a dilution refrigerator with a temperature stability of
0.1 mK. Powder neutron diffraction was performed using
the high-intensity D1B and high-resolution D2B diffrac-
tometers at ILL, France, using incident neutron wavelength
2.52 and 1.59 Å, respectively. The evolution of the
magnetic Bragg peak intensities with temperature and field
was followed by performing high-resolution single-crystal
neutron scattering using the triple-axis spectrometer
FLEXX at HZB, Germany [14]. The instrument was set
up with 400 collimation before and after the sample and
incident neutron wavelength of λ ¼ 4.05 Å. The corre-
sponding wave vector and energy resolution (FWHM) was
on the order of 0.014 Å and 0.15 meV, respectively.
Figure 1 shows bulk ac susceptibility data from a single-

crystal LiYbF4. The temperature-field phase boundary
was mapped for a transverse magnetic field applied along
the c axis. Figure 1(a) shows the real part of the ac

susceptibility χ0 as a function of temperature in zero field.
The peak in zero field reflects the antiferromagnetic
transition at TN ¼ 130 mK. Figure 1(b) shows χ0ðHÞ at
30–200 mK. Below TN, a pronounced cusp is observed
which corresponds to a quantum transition from the
ordered to a quantum paramagnetic phase. At base temper-
ature, a maximum in χ0ðHÞ is found at Hc ¼ 0.48 T. The
peak shifts to lower fields as temperature is increased.
Based on these measurements, we can accurately map out
the phase diagram shown in Fig. 1(c).
The specific heat as a function of temperature is shown in

Fig. 2(a). In zero field, a sharp peak in the specific heat
capacity marks the second-order thermal transition [15].
On applying a transverse field, we find the peak at TN
decreases in amplitude and shifts to lower temperature at
H ¼ 0.45 T. Above Hc, only a broad hump is found in the
specific heat capacity. At such low temperatures, phonon
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FIG. 1. (a) Real part of ac susceptibility χ0 as a function of
temperature in zero field and (b) χ0 as a function of field at
different temperatures. (c) Magnetic phase diagram mapped
out using the susceptibility. Inset shows the bilayer magnetic
structure of LiYbF4.
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FIG. 2. (a) Specific heat in zero and finite fields as a function of
temperature. Calculation of specific heat capacity in the single-
ion limit for different fields are plotted by continuous lines. The
data were displaced vertically by multiplying with scaling factors
given in the figure. (b) Determination of the specific-heat critical
exponent α for the thermal transition based on measurements
above and below TN (dashed line). Scaling away from the critical
region was fitted by the dotted line.
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and crystal-field-level contributions are frozen out.
We model the specific heat capacity away from the QPT
using a parameter-free model where the Hamiltonian H
contains crystal field, hyperfine, and Zeeman terms.
From the diagonalized Hamiltonian hnjHjni ¼ ϵn, we
calculate for each isotope i the Schottky specific heat,
CSch
i ¼ kBβ2½hϵ2i − hϵi2�, where kB is the Boltzmann factor

and β ¼ 1=ðkBTÞ. The thermal ensemble average is
denoted by h…i. The total specific heat capacity is found
from the weighted sum of contributions from each Yb
isotope. The comparison between the experiment and our
simple model is remarkably good considering that this is a
parameter-free calculation with all parameters fixed from
other experiments. It is possible to improve the comparison
by including quadrupolar operators, and by fine-tuning
hyperfine coupling strengths and the crystal field param-
eters, etc. However, this would give too many adjustable
parameters, and the calculation anyway ignores collective
effects beyond the mean-field level.
In zero applied field, close to TN , the heat capacity can

be described by a universal power law,

Ccrit
p ¼ Ajtjα þ B; ð1Þ

where the reduced temperature t ¼ 1 − T=TN , A and B are
free parameters which can have different values above and
below TN. The results of our analysis are shown in
Fig. 2(b). The contribution from the background term,
B, is found to be small and is set to zero above and below
TN . A good fit is found for α ¼ −0.25ð1Þ, similar to the
value of −0.28ð4Þ found in LiErF4 [12]. The negative
exponents imply that Cp is finite at TN . Away from the
phase transition we observe a change in the scaling. Above
around 250 mK and below 100 mK the data can be fit to an
exponent of around −1.3ð1Þ. It is somewhat surprising that
the critical scaling can be traced out all the way to 2TN and
is dramatically different to LiErF4 where a crossover was
found above 1.03TN [12].
To elucidate the magnetic structure below TN, we

performed neutron diffraction on a powder of LiYbF4.
At 10 K, in the paramagnetic phase, the crystal lattice
was refined using the I41=a space group, where
a ¼ 5.13433ð8Þ Å and c ¼ 10.5917ð2Þ Å. Below 140 mK
we find additional peaks which emerge from antiferromag-
netic ordering corresponding to a k ¼ ð1; 0; 0Þ magnetic
propagation wave vector. Figure 3(a) shows a powder
diffraction pattern obtained by subtracting measurements
above TN from 50 mK data. The magnetic peaks are well
described by a bilayer antiferromagnetic structure with
moments along the [110] direction, where moments related
by I centering are aligned antiparallel. An ordered moment
of 1.9ð1ÞμB is found to reside on each Yb3þ ion. A
schematic of a possible magnetic structure is shown in
Fig. 1(c). This differs from LiErF4 where the moments are
parallel to the [100] direction. Although our data do not
allow us to uniquely identify the magnetic structure,

it is clear that LiErF4 and LiYbF4 order differently
(see Supplemental Material [16]). The origin of this is
not entirely obvious, but could be attributed to the in-plane
anisotropy set by the crystal field. This would depend
primarily on the B4

4ðcÞO4
4ðcÞ crystal field term and result

in the configuration energy E ∼ B4
4ðcÞ cosð4ϕÞ having

minima rotated by 45° when changing the sign of B4
4ðcÞ

parameter. Indeed, our previously reported results show
that B4

4ðcÞ is significantly larger and of opposite sign in
LiYbF4 compared to LiErF4 [13].
The powder sample of LiYbF4 was measured as a

function of temperature in fine steps across the thermal
phase transition. Figure 3(b) shows how the magnetic inten-
sity of the (001) reflection decreases with temperature. As
expected from ac susceptibility and heat capacity measure-
ments, magnetic order disappears above 136 mK. Single-
crystal measurements as a function of transverse field are
shown in Fig. 3(c). At Tbase ¼ 70 mK, a field of around
0.43 T suppresses the (100) magnetic peak. A small
contribution from critical scattering is observed as tails
of the main peak. The neutron scattering measurements of
LiYbF4 reaffirm the phase diagram found from ac suscep-
tibility in Fig. 1.
The evolution of the magnetic Bragg peak intensities

with temperature and field are shown in Fig. 4(a).
Continuous onset and smooth evolution of the order
parameter is observed with both temperature and field.
For both the powder and single-crystal data we have

considered a model consisting of (i) a Lorentzian line shape
to describe the critical fluctuations close to the phase
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FIG. 3. (a) Magnetic powder diffraction pattern from the
subtraction of paramagnetic background from 50 mK measure-
ments. (b) Magnetic Bragg peak from powder diffraction at
different temperatures in zero field and (c) single-crystal mea-
surements at 70 mK in different fields. Lines are fits to a Gaussian
with additional contribution from critical scattering.
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transition and (ii) a delta function to account for long-range
order. Both of these were then convoluted by a Gaussian,
representing the instrumental resolution. The strength of
scattering from critical fluctuations is rather weak and
within the measured resolution and statistics cannot be
refined to extract further exponents in either powder or
single-crystal data. The amplitude of the convoluted delta
function σ corresponds to the square of the order parameter,
i.e., staggered magnetization. Therefore, sufficiently close
to the phase boundary, σ ∝ t2βT for a zero-field measure-
ment and σ ∝ h2βH , where h¼ 1−H=Hc on sweeping
magnetic field at constant temperature. From such treat-
ment we obtain the results shown in Fig. 4(b), where
squares and circles are for thermal and quantum critical
exponents, respectively. Fitting the data to a power law, we
obtain βT ¼ 0.20ð1Þ and βH ¼ 0.35ð1Þ.
The base temperature of 70 mK at which the field was

swept to cross the quantum phase transition may appear
rather high as Tbase ≃ 0.5TN . For LiErF4, on the other hand,
the βH was extracted at Tbase ≃ 0.2TN . To ensure that the
extracted βH ¼ 0.35ð1Þ is correct and not affected by
thermal fluctuations, we followed the field evolution of
the (100) Bragg peak at a few higher temperatures. We find,
as shown in Fig. 4(c), no appreciable change in βH in
the temperature range studied. This assertion is further
corroborated by the heat capacity measurements, shown in
Fig. 2, where the thermal critical region is found above
around 0.8TN . Comparing the critical exponents to tabu-
lated results [20–22], it is clear that the quantum transition
falls in the β ¼ 0.32–0.36 range predicted for 3D models.
While the 2D XY=h4 model predicts β ¼ 0.125–0.23,
bound by 2D Ising and XY transitions, which best describes
the thermal phase transition [22].
Such dimensional reduction has been hinted at from

studies of other dipolar systems. A good example is
RBa2Cu3O7−δ whose dipolar interactions were the focus

of some theoretical work [23,24]. It was argued two-
dimensional behavior is strongly related to the spacing
of basal planes with a crossover from three-dimensional
behavior around c=a > 2.5. However, relatively strong
exchange coupling as well as superconductivity makes
this system more complicated to separate the influence of
the dipolar interaction. We hypothesize that systems such
as RPO4ðMoO3Þ12 · 30H2O, where rare-earth ions form a
diamond lattice, would also be a good candidate to examine
quantum criticality due to strong dipolar and weak
exchange interactions [25]. Quantum spin fluctuations of
dipolar-coupled antiferromagnetism have already been
suggested to play a major role in these systems [26].
To conclude, dipolar-coupled LiYbF4 undergoes a ther-

mal transition into the bilayer, XY antiferromagnetically
ordered phase, where the critical exponents follow the
2D XY=h4 universality class despite the lack of apparent
two dimensionality in the structure. Applying a transverse
magnetic field suppresses the order, inducing a quantum
phase transition into a paramagnetic state, which scales
according to ð2þ 1ÞD universality. These observations are
in accordance with those for LiErF4 with largely different
crystal field environment, TN , and hyperfine interactions.
Our results, therefore, experimentally establish that the
dimensional reduction is a universal feature of dipolar-
coupled quantum antiferromagnets on the distorted
diamondlike lattice and are likely to be applicable to a
vast range of seemingly different systems. While it may be
premature to conclude that dimensional reduction is uni-
versal to other lattices, the challenge is now to find a
dipolar-coupled antiferromagnet without it.
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