PRL 116, 197201 (2016)

PHYSICAL REVIEW LETTERS

week ending
13 MAY 2016

Topological Aspects of Symmetry Breaking in Triangular-Lattice Ising Antiferromagnets

Andrew Smerald,1 Sergey Korshunov,z‘* and Frédéric Mila'
'Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL),
CH-1015 Lausanne, Switzerland
’L. D. Landau Institute for Theoretical Physics, Kosygina 2, Moscow 119334, Russia
(Received 4 February 2016; revised manuscript received 21 March 2016; published 9 May 2016)

Using a specially designed Monte Carlo algorithm with directed loops, we investigate the triangular
lattice Ising antiferromagnet with coupling beyond the nearest neighbors. We show that the first-order
transition from the stripe state to the paramagnet can be split, giving rise to an intermediate nematic phase in
which algebraic correlations coexist with a broken symmetry. Furthermore, we demonstrate the emergence
of several properties of a more topological nature such as fractional edge excitations in the stripe state, the
proliferation of double domain walls in the nematic phase, and the Kasteleyn transition between them.

Experimental implications are briefly discussed.
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The triangular-lattice Ising antiferromagnet (TLIAF) is
the archetypal model of frustration. Ground states of the
nearest-neighbor (NN) model obey the local constraint that
triangles cannot host three equivalent Ising spins, and it
follows that there is an extensive entropy [1,2]. This results
in a critical state, characterized by algebraic correlations
between the spins [3,4].

In reality, interactions are rarely limited to NN, and a
more realistic Hamiltonian takes the form

His = ZJUUI‘G,', (1)
(i)

where 6; = 1 and J;; > 0. This model is experimentally
relevant in a diverse range of systems, including artificial
dipolar magnets [5], materials such as Ba;CuSb,0Oq where
electrically charged dumbbells act as Ising degrees of
freedom [6,7], trapped ions [8,9], frustrated Coulomb
liquids [10], Josephson junction arrays [11], and absorbed
monolayers [12].

In spite of its ubiquity, this model has received limited
attention. The difficulty in analyzing H;, [Eq. (1)] arises from
the critical nature of the NN ground-state manifold, which is
very sensitive to perturbation, and in the presence of further-
neighbor coupling the model is not amenable to an analytic
solution. Besides, in the limit J; — oo as compared to the
other characteristic energy scales of the problem (/5, J5, etc.),
Monte Carlo (MC) simulations based on the Metropolis
algorithm are unable to reach the ground state, and the
problem of freezing remains even when this constraint is
relaxed, for example in the case of dipolar interactions [13].

The current understanding of the properties of Hj, is
based on estimates of the energy and entropy of different
types of extended defects. This results in the prediction that
the broken Z, x Z; symmetry of the low-temperature stripe
state [14—16] can be restored either in a single first-order

0031-9007/16/116(19)/197201(5)

transition, or via a pair of transitions, where the low-
temperature, Z,-restoring transition is second order and the
higher-temperature, Z;-restoring transition is first order
[14]. When the transition is split, an intermediate phase of
nematic type is revealed, and it is characterized by a set of
fluctuating double domain walls [14] (DDWs).

In this Letter, we show that the difficulty in simulating the
TLIAF with MC calculations arises from the topological
structure of the NN manifold of ground states. This can be
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FIG. 1. Representative phase diagrams of the TLIAF with

J1/T — oo, determined by MC simulation. All phase boundaries
were determined from the winding number. (a) In the presence of
J, and J; interactions there are 3 possible phases, and all
transitions are first order. (Inset) Illustration of first to fifth
neighbors of the central site and bond labeling. (b) In the presence
of a Js interaction an intermediate nematic state is revealed. Blue
(red) dots show the position of a second order Kasteleyn
transition calculated analytically [14,17] (with MC calculations).
(c) Stripe phase. (d) Nematic phase with fluctuating double
domain walls (shown in black). (e) Zig-zag phase.
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FIG. 2. Winding number sectors of the TLIAF. (a) An Ising
configuration within the nearest-neighbor ground state manifold
can be mapped onto a dimer covering of the dual honeycomb
lattice. The dimer crossings of the reference lines are used to
calculate the winding number W = (W, W,). (b) The allowed
winding number sectors, illustrated for L = 12. The W = (0,0)
sector (circled in blue) has a macroscopic degeneracy, while the
sectors containing stripe (zig-zag) states have a two (four)-fold
degeneracy.

resolved by employing a specially designed worm algorithm
[17] that allows one to travel through the different topo-
logical sectors present in the J; — oo limit, and by using the
topological winding number rather than the order parameters
to map out the phase diagrams. The resulting phase diagrams
of two representative models (see Fig. 1) are in excellent
agreement with the predictions of Ref. [14], including the
stabilization of an intermediate nematic phase for large
enough fifth-neighbor coupling. We also show that the
hidden topological nature of the model leads to a number
of new insights, including fractional edge excitations, and
the Kasteleyn nature of the phase transition between the
stripe and the nematic phases [36].

We start by reviewing the topological properties of the
NN ground-state manifold. This can be split into topologi-
cal sectors by defining a pair of winding numbers
W = (W, W,). A useful first step is to map the TLIAF
onto a dimer model on the dual honeycomb lattice, in
which a dimer is placed on each honeycomb bond that
separates two equivalent Ising spins [36] (see Fig. 2). Two
reference lines are defined on the triangular lattice and for
each honeycomb bond crossing the reference line the
associated winding number is augmented by F1/3 in
the absence of a dimer and +2/3 in the presence of a
dimer. The sign is determined by defining a direction in
which the reference line should be crossed, splitting the
honeycomb lattice into two interpenetrating sublattices
1 and 2 and taking the upper sign if the bond direction
is 1 — 2 and the lower sign for 2 — 1. The NN manifold is
dominated by the W = (0,0) sector, and in the thermo-
dynamic limit the ratio of configurations in this sector
compared to the total number of configurations tends to
0.996 [17].

Let us now consider the effect of further-neighbor
couplings on this degenerate ground state manifold (or
equivalently the limit J; — o0). A positive J, selects three
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FIG. 3. Representative plots of the structure factor in the 4
phases (see Fig. 1). (a) In the stripe phase there are a set of Bragg
peaks, and similarly (b) in the zig-zag phase. (c) The nematic
phase is characterized by pairs of peaks, with power-law
singularities, and the peak splitting is proportional to the density
of double domain walls. (d) The critical paramagnet also has
peaks with power-law singularities, but at different positions
compared to the nematic state.

stripe states which belong to the topological sector W =
(L, L) for stripes parallel to A bonds, W = (0, —L) for B
stripes and W = (—L,0) for C stripes. These topological
sectors are as far as possible from the dominant sector
W = (0,0), and up to the Z, degeneracy associated with
global spin flips, they contain only these states (see Fig. 2).
The situation is similar for the zig-zag ground states
realized for J3/J, > 1/2 [17]. Starting from high temper-
ature, these states are thus out of reach of a single spin flip
algorithm. So we have developed a sophisticated worm
algorithm with nonlocal updates that allow the system to
change topological sector. Such updates involve identifying
loops of alternating dimer-covered and empty bonds, and
exchanging the two, thus flipping all the spins contained
within the loop [18]. In addition, we found that it was
necessary in practice to direct the creation of the loops
using all further-neighbor interactions, and this results in
rejection-free updates [17].

To map out the phase diagram of the models with
J = oo, the most efficient way was to keep track of the
nonanalyticities of the temperature dependent winding
number defined by W, = max(|W|,|W,|,|W, — W,|).
Including only J, and J3, the resulting phase diagram
consists of three phases: a high temperature paramagnetic
phase, and two low-temperature ordered phases, a stripe
phase for J3/J, <1/2, and a zig-zag phase for
J3/J, > 1/2. The general phase diagram can potentially
include an additional intermediate phase of nematic char-
acter, as shown in Fig. 1 for J5/J, = 0.5. The nature of the
various phases can be revealed by looking at snapshots
[17]. A more precise characterization of direct experimental
relevance is provided by the structure factor S(q) =
>.ij{oi0,)€", with r =r; —r;. Simulations are shown
in Fig. 3. The ordered phases have Bragg peaks, while the
nematic phase has power-law singularities.

We next discuss in more detail the various phases,
starting with the stripe phase. This simple looking structure
has remarkable properties. First, the state is fluctuationless
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at all T. Local excitations involve the creation of pairs of
defect triangles, with an energy cost of 4/, while nonlocal
excitations involve the formation of DDW excitations that
wind the system [14], with an energy cost proportional to
JoL. Both of these types of excitations are excluded, the
local ones due to the condition J; — oo and the nonlocal
ones by taking the thermodynamic limit L — oo. The zig-
zag phase has very similar properties. However, the stripe
state does support fractional edge excitations that are
energetically forbidden from penetrating the bulk. We have
performed simulations with open boundary conditions in
order to study these [17], and a representative configuration
is shown in Fig. 4. For boundaries orientated parallel to the
stripe direction, defect triangles can be created without a
Ji-energy cost. In fact they require an energy of only
2J, —8J3 +4J,, and thus there will be a thermally
activated population. Since, in the bulk, defect triangles
are constrained to appear in pairs, these are fractional
excitations. Local dynamics allows these defect triangles to
propagate freely along the boundary, but penetration into
the bulk is penalized by an energy cost proportional to the
penetration depth.

The intermediate nematic state involves the proliferation
of DDW defects (see Fig. 1). The DDWs run perpendicular
to the direction of the stripes and therefore the nematic
state breaks the sixfold rotational symmetry of the
triangular lattice down to a twofold symmetry. The state
is best characterized by the density of the DDWs, v(T),
and this is related to the winding number according to
v(T) = 4(L — Wy, )/3L. Tt can be seen in Fig. 5 that W,
varies continuously with temperature. The DDWs do not
form a periodic arrangement but instead fluctuate, and the
state is critical.

The critical nature of the nematic state can be demon-
strated by studying the peaks of the structure factor, S(q).
We find that S(qpea + 6g) |6q|*~2, where 7 is a temper-
ature-dependent critical exponent. This results in algebraic

correlations according to S(r) = (6;0;) « %, and in the

FIG. 4. Fractional edge excitations in the low-temperature
stripe state. While the stripe state is fluctuationless in the bulk,
defect triangles (red) can be created at open boundaries at an
energy cost of 2J, —8J3 + 4J4. The snapshot shown is taken
from a Monte Carlo simulation of the J; — J, model performed
on a cylinder at T = 1.5J, (for comparison 7| = 6.39J,).

direction perpendicular to the walls one can write S(r) «
cos(zr/L)(L/r)". Simulations show that 0 < 7 < 1/2, and
it is demonstrated below that 7 = 1/2 close to Tppw-

Next we turn to the nature of the phase transitions. For
Js = 0 the transition out of the stripe state is first order,
and involves an abrupt change of the winding number
sector. This can be seen in Fig. 5, where in the stripe state
Wmax = L, while in the critical paramagnet W ., — 0. For
Js # 0 the high-temperature transition from the nematic
state to the critical paramagnet is also first order, and
involves a transition from an intermediate winding number
sector to W, — 0.

More interesting is the low-temperature second-order
transition that occurs in the presence of a J5 interaction (see
Fig. 5). At this phase transition the Ising Z, symmetry is
broken, and thus one would naively expect that the
transition is in the Ising universality class. However, if
one constructs an order parameter based on this symmetry
it exhibits a discontinuous jump at the transition.
Furthermore, if one makes a mapping to a dimer model
on the honeycomb lattice, the transition remains
unchanged, despite the fact that the Z, symmetry has been
discarded. In fact it is the change of topology and not of
symmetry that drives the transition and it is within the
Pokrovsky-Talapov universality class [19,20].

The best way to characterize this transition is as a
nonanalyticity in the winding number, W, and therefore
a divergence of the associated susceptibility. This occurs at
Tppw, which can be calculated exactly and is the temper-
ature at which the free-energy of a DDW excitation
vanishes [14,17]. The second-order nature of the transition
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FIG. 5. Temperature dependence of the winding number with
J, =1, J3 = 0.4 and variable Js. Monte Carlo simulations on an
L =96 cluster are used to measure W, = max(|W|,|W,],
|W, — W,|), and errors are typically smaller than the point size.
For J5 = 0 (black) there is a direct first order phase transition
from the low-temperature stripe state (W, = L) to the high-
temperature critical paramagnet (W ., — 0). For all other values
of Js there is a second order phase transition at Tppw = 2.29
between the stripe state and a nematic state (variable W),
followed by a first order transition to the critical paramagnet at
higher T.
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is ensured by the noncrossing constraint of the DDWs,
which leads to an entropically driven repulsion [19,20].

In order to achieve a quantitative understanding of the
critical behavior, it is useful to make a mapping to a 1D
quantum model of fermions [17,19-21]. A DDW can be
identified with a fermion whose imaginary time propaga-
tion is parallel to the wall, and the noncrossing condition is
encoded in the fermionic anticommutation relation. The
fermionic chemical potential, y, is related to the temper-
ature of the classical model by y « T — Tppw. In the
fermionic language, the second-order phase transition
between the nematic and stripe states is a metal-insulator
transition. Close to this transition the density of fermions
will be very low, and therefore one can ignore fermion-
fermion interactions, which become progressively more
important at higher temperatures. In consequence one finds
v(T) « (T — Tppw)”, with # = 1/2. This critical exponent
is typical of the Pokrovsky-Talapov universality class
[19,20], and is clearly not typical of an Ising transition.
A similar analysis of the structure factor leads to the
prediction 7 = 1/2 close to the transition [21]. We have
confirmed these predictions by MC simulation [17].

If the /| — oo constraint is relaxed, then for 7 > 0 there
will be a low but finite density of defect triangles in the bulk
of the stripe state. These have to be created in pairs, and are
confined since they are joined by a pair of DDWs, and thus
the free energy cost grows linearly with their separation
[17]. In contrast, defect triangles are deconfined in the
nematic state since the free energy of DDWSs goes to zero
on entering the state. In fact, if one of the defect triangles
winds around the system, and then the pair annihilates, a
pair of DDWs has been created. We expect that the
relaxation of the J; — oo constraint will cause this tran-
sition to cross over to the Ising universality class, but this
will only be physically significant in an exponentially
suppressed temperature window [22,37,38]. Thus, unless
Ji is small, the behavior remains dominated by the
Kasteleyn character of the J; — oo limit.

It is useful to compare and contrast the present findings
with those in related systems. First, a number of states with
a similar coexistence of order and liquidity, as in the
nematic state, have recently been found in other frustrated
magnets [39-45]. There are also close parallels with the
floating phases found in systems of gases adsorbed onto a
substrate [23]. The transition between the stripe and
nematic phases has a lot in common with the Kasteleyn
model of dimers on the honeycomb lattice [36] and with
spin ice in a [100] magnetic field, which displays a 3D
Kasteleyn transition [24,25,46]. In particular, the second-
order transition that we find in the presence of a J;
interaction is within the same Pokrovsky-Talapov univer-
sality class as Kasteleyn’s model. However, there are a
number of important differences. The model we study is
isotropic and therefore the rotational lattice symmetry is
broken spontaneously, rather than in the Hamiltonian.

This isotropy leads to a topological degeneracy in the
ground state and the possibility of an intermediate nematic
phase. Also, the Z, symmetry associated with the Ising
spins is not present in the Kasteleyn model, and this leads to
the existence of fractional edge states, as well as defect
triangles in the bulk when the J; — oo constraint is relaxed.
The closest analogue to the physics we present here is
probably spin ice with a uniaxial distortion and a 4-spin
interaction [44]. In this case the 4-spin interaction splits
a single first-order transition into two second-order
transitions. However, the uniaxial distortion breaks most of
the symmetry of the pyrochlore lattice by hand, and the
physical interpretation of strings is different from the
DDWs of the TLIAF.

Finally, let us discuss in what circumstances the tran-
sition can be expected to be split. In Fig. I we have ignored
J4 interactions, since this acts against the Js-induced
splitting of the transition by reducing the temperature of
the first-order line [14]. Similar reasoning can be extended
to further-neighbor couplings and for a set of interactions
that decrease smoothly with distance we expect that a single
first-order transition is typical. We have checked that this is
the case for long-range dipolar interactions. However, the
magnetic exchange interaction does not necessarily lead to
couplings that decay smoothly with separation, and can
therefore result in systems where the transition is split.

To show that this is a generic possibility, we have derived
a general condition by mapping the Ising degrees of
freedom onto height configurations of the [111] face of
a crystal with a simple cubic lattice [26]. A continuum free
energy can thus be written as [14,17],

Flh = / dzr{%(Vh)z—i—Kﬂ:[(ea-V)h

RO = Vocos [T (=)} @)
where K, is temperature dependent, K5 is related to the
energy cost of double domain walls, K, ensures that the
free energy is bounded from below, and the last term is a
locking potential that favours integer values of the height
field. Here Ay, (r) is the height configuration in one of the
stripe states and e, is a set of 3 unit vectors forming 120°
angles with one another. Analysis of this model shows that
the transition is split when [17],

K3 144V,
8K4 ”4[|vhstr| - K3/(2K4)}2 .

3)

In conclusion, we have shown that the physics of the
extended TLIAF with large nearest-neighbor coupling, a
model of direct relevance in several contexts, is remarkably
rich, with a phase diagram that can only be properly
understood by invoking both broken symmetry and
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topological concepts. Indeed, while all phases can be
characterized by their broken symmetry, several of their
properties are more topological in nature, such as the
fluctuationless character of the low-temperature stripe state
and its fractional edge excitations, the proliferation of
double-domain walls in the intermediate nematic phase
that appears when the first-order transition is split by, for
example, a fifth-neighbor interaction, and the Kasteleyn
transition that separate these phases. Far from being of pure
academic interest, the topological aspects of the problem
might actually be the key to understanding the properties of
systems in which the development of true symmetry
breaking is hampered by a purely local dynamics, or by
the finite size of the sample. For instance, finite clusters are
expected to develop domain walls to minimize their edge
energy if they can reach their ground states, or to support
edge excitations if they cannot. We hope that the present
Letter will motivate experimental studies along these lines.
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