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A shear Alfvén wave parametric instability is observed for the first time in the laboratory. When a single
finite ω=Ωi kinetic Alfvén wave (KAW) is launched in the Large Plasma Device above a threshold
amplitude, three daughter modes are produced. These daughter modes have frequencies and parallel wave
numbers that are consistent with copropagating KAW sidebands and a low frequency nonresonant mode.
The observed process is parametric in nature, with the frequency of the daughter modes varying as a
function of pump wave amplitude. The daughter modes are spatially localized on a gradient of the pump
wave magnetic field amplitude in the plane perpendicular to the background field, suggesting that
perpendicular nonlinear forces (and therefore k⊥ of the pump wave) play an important role in the instability
process. Despite this, modulational instability theory with k⊥ ¼ 0 has several features in common with the
observed nonresonant mode and Alfvén wave sidebands.
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Alfvén waves, a fundamental mode of magnetized
plasmas, are ubiquitous in space, astrophysical, and labo-
ratory plasmas. While the linear behavior of these waves
has been extensively studied [1–5], nonlinear effects are
important in many real systems, including the solar wind
and solar corona. Theoretical predictions show that these
Alfvén waves may be unstable to various parametric
instabilities (e.g., Refs. [6–8]) even at very low amplitudes
(δB=B < 10−3). Parametric instabilities could contribute to
coronal heating [9], the observed spectrum and cross-
helicity of solar wind turbulence [10–12], and damping
of fast magnetosonic waves in fusion plasmas [13,14].
An abundance of theoretical work [6,7,15–19] has found

three types of parametric instabilities for a k⊥ ¼ 0 Alfvén
wave: decay,modulational, and beat. The decay instability is
the most widely known and involves the decay of a forward
propagating Alfvén wave into a backward propagating
Alfvén wave and a forward propagating sound wave. By
contrast, the modulational instability results in forward
propagating upper and lower Alfvénic sidebands as well
as well as a nonresonant acoustic mode at the sideband
separation frequency. To allow the forward propagating
waves to interact, the pump wave must be dispersive—
therefore the modulational instability at k⊥ ¼ 0 requires
finite ω=Ωi through inclusion of Hall effects [7].
Ponderomotive coupling between the pump and sideband
Alfvén modes self-consistently drives the nonresonant
density perturbation parallel to the background magnetic
field. In this context, “nonresonant” means that the mode
does not satisfy a dispersion relation in the absence of the
instability drive; this is also called a quasimode in the fusion
community [20,21].
Both shear Alfvén wave decay and modulational

instabilities have been produced in numerical simulations
[11,22–25], but observational evidence is limited.

Observations in the ion foreshock region upstream of the
bow shock in Earth’s magnetosphere have found cases where
a decay instability is possible, but results are not conclusive
due to limited available data [26,27].
In this Letter, the first laboratory observations of a shear

Alfvén wave parametric instability are presented. A single
finite ω=Ωi, finite k⊥ Alfvén wave is launched, and three
daughter waves are observed when the amplitude of the
pump is above a threshold: two sideband Alfvén waves
copropagating with the pump and a low frequency non-
resonant mode. Frequency and parallel wave number
matching relations are satisfied. Although these features
of the observed instability are consistent with the k⊥ ¼ 0
modulational instability theory, the theoretical growth rate
is too small to explain observations. The spatial pattern of
the daughter modes suggests a perpendicular (to the
background magnetic field) nonlinear drive.
Experiments are conducted using the Large Plasma

Device (LAPD) at UCLA, a cylindrical vessel capable of
producing a 16.5 m long, quiescent, magnetized plasma
column for wave studies. The BaO cathode discharge
lasts for ∼10 ms, including a several millisecond-long
current flattop. Typical plasma parameters for the present
study are ne ∼ 1012 cm−3, Te ∼ 5 eV, and B0 ∼ 1000 G
(β ∼ 10−3–10−4) with a fill gas of helium. Extensive prior
work has focused on the properties of linear Alfvén waves
[5,28–30]. Studies of the nonlinear properties of Alfvén
waves have also been performed on the LAPD; in these
experiments, two launched Alfvén waves nonlinearly
interact to drive a nonresonant mode [31], a drift wave
[32], an acoustic mode [33,34], or an Alfvén wave [35].
For the present set of experiments, a single antenna is

placed at the far end of the LAPD, as shown in the top panel
of Fig. 1. This is either the 96 cm long strap antenna [36]
shown in the diagram or the rotating magnetic field (RMF)
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antenna described in Gigliotti et al. [37]. The pump wave is
launched at ω0 ∼ 0.67Ωi, producing the pattern in the plane
perpendicular to B0 shown for each antenna in the bottom
panel. The strap antenna launches a linearly polarized
m ¼ 0 Alfvén wave cone (k⊥0ρs ¼ 0.11) in which oscil-
lating magnetic field vectors (white arrows) circle the field-
aligned wave current. By contrast, the RMF antenna is
set up to produce two field-aligned current channels
(k⊥0ρs ¼ 0.21) rotating around B0 in an m ¼ 1 pattern
[37]. The rotation direction and hence wave polarization
may be controlled by varying the antenna phasing. To
ensure the launched wave remains nearly monochromatic,
the antenna current is digitized (not shown) and found to
contain no significant sideband component.
In the plasma column in front of the antenna, magnetic

and Langmuir probes detect the signatures of the pump and
daughter modes. Each probe is mounted on an automated
positioning system that may be used to construct a 2D
profile in the x-y plane averaged across multiple discharges.
When the pump wave amplitude exceeds a threshold

value, additional peaks are observed in the frequency
spectrum, as shown in Fig. 2. Panel (a) of Fig. 2 shows
the appearance of three modes: a low frequency mode (M1),
a lower sideband mode (M−), and an upper sideband mode
(Mþ). The frequency matching relations ω�∓ω1 ¼ ω0

hold. However, M1 is not purely a density perturbation as
predicted by the k⊥ ¼ 0 modulational instability theory; as
seen in Fig. 2, the mode has significant magnetic character.
A clear parametric dependence of the mode frequencies

on pump amplitude is shown in panel (b) of Fig. 2. As the
pump amplitude δB0⊥=B0 increases above threshold, the

frequencies ofM1 andMþ increase; there is a correspond-
ing decrease in the frequency of M− such that frequency
matching relations are satisfied at all wave powers.
To determine the character of the three observed daughter

modes, the parallel wave numbers are measured using a set
of three axially separated magnetic probes placed 0.639 m
apart, allowing resolution of wave numbers up to 4.9=m. As
shown in Fig. 3, this measurement reveals positive values of
k∥ for all modes, indicating that all three daughter modes
are copropagating with the pump. Parallel wave number
matching is satisfied, k∥�∓k∥1 ¼ k∥0. Based on the mea-
sured dispersion relation, the pump, M−, and Mþ are
identified as kinetic Alfvén waves (KAWs) while M1 is a
nonresonant mode. Note that M1 falls above the KAW
dispersion curve ω ¼ kjjVA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðk⊥ρsÞ2 − ðω=ΩiÞ2
p

for
all possible values of k⊥. However, the measured kjj1
is too small for M1 to be an acoustic mode (for these
parameters, Cs ¼ 0.012VA). This production of a
nonresonant mode is consistent with the modulational
instability.

FIG. 1. Experimental setup in LAPD. Top: An Alfvén wave
antenna on the right end of the device launches the pump wave.
Magnetic and Langmuir probes used to diagnose the interaction are
shown. Bottom: Spatial pattern of the pump wave in the xy plane
measured by a magnetic probe at z ¼ 2.6 m for the strap antenna
(left, B0 ¼ 1135 G) and RMF antenna (right, B0 ¼ 993 G).

(a)

(b)

FIG. 2. Observed kinetic Alfvén wave (KAW) parametric
instability showing threshold behavior and parametric depend-
ence. RMF antenna, RHCP mode, B0 ¼ 993 G. (a) Frequency
spectrum from a magnetic probe at x ¼ 0, y ¼ −6 cm, z ¼ 2.6 m
for three pump mode amplitudes. When the pump amplitude is
above threshold for instability, three daughter modes are seen.
(b) Parametric dependence of the daughter mode frequency as a
function of pump amplitude δB0⊥=B0. The pump amplitude is 0
on the log10 color scale. White vertical dashed lines represent
values of pump amplitude from (a).
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Measurements in the plane perpendicular to the back-
ground field reveal that perpendicular nonlinear forces
likely play a role in generating the observed daughter
waves. This is shown in Fig. 4 which displays the pattern of
a representative daughter mode M− in the strap antenna
case; the plot is derived from a magnetic probe scanned
spatially over many shots. By comparing this figure to the
strap pump mode pattern in Fig. 1, it can been seen that the
amplitude peak ofM− occurs near the center of the current
channel on a gradient of the pump mode magnetic field. By
contrast, the parallel ponderomotive force associated with
the modulational instability will produce an amplitude peak
in the daughter modes at the location where the pump wave
magnetic field peaks [33,38]. This difference suggests a
perpendicular nonlinearity in which perpendicular gra-
dients of the pump mode amplitude (i.e., k⊥) play a key
role in the nonlinear terms.
The pumpmode polarization also influences the observed

instability. This is investigated by changing the RMF
antenna phasing to produce one of the two polarization
patterns shown in the inset panel of Fig. 5. Polarization is
quantified at each spatial point by measuring the ratio of the
minor to major radius in the ellipse traced by the rotating
magnetic field vector. This quantity is signed negative for
left-hand rotation and positive for right-hand rotation. As
shown in Fig. 5, left-hand (LHCP) and right-hand (RHCP)
pumpmodes contain opposite polarizationmixes that sum to
linear polarization. Eachmix produces a different frequency
spectra in the vicinity of the current channel; the sideband
separation frequency produced by the LHCP mode is less
than half that produced by the RHCP mode. As in the
linearly polarized strap antenna case, the daughter mode
amplitudes peak near the current channel center for the
RHCP pump mode. The spatial profile and nonlinear

physics may be different in the LHCP case and is still under
investigation; the LHCP mode also leads to a broadening of
the pump mode profile and a corresponding broad spectrum
at low frequencies. The existence of a polarization depend-
ence is consistent with the theoretical literature on para-
metric instabilities. However, most theoretical work (e.g.,
Refs. [6,7]) considers uniformly polarized plane waves,
making direct comparisons difficult.
Despite important physical differences with the present

work, modulational instability theory with k⊥ ¼ 0 still
describes some features of the observed process well.
Figure 6, panel (a) shows the roots of the dispersion
relation derived by Wong and Goldstein [6] and
Hollweg [7], solved for LAPD parameters. This two-fluid

FIG. 3. Parallel wave number measurement showing daughter
modes copropagating with the pump. The pump, M−, and Mþ
are identified as KAWs while M1 is a nonresonant mode. Strap
antenna, B0 ¼ 1140 G, δB0⊥=B0 ¼ 1.9 × 10−3. Magnetic probes
at z ¼ 5.11 m, 5.75 m, and 6.39 m. The fluid dispersion relation
for a KAW with the pump k⊥0ρs ¼ 0.11 and a line with slope
ω=kjj ¼ 0.29 VA are plotted for comparison.

FIG. 4. Spatial profile of M− for the strap antenna suggesting
the nonlinearity is perpendicular in nature. A cut of δBx is shown
on the right. Strap antenna pump from Fig. 1, B0 ¼ 1135 G.
Color represents fluctuating magnetic field amplitude δB−⊥;
white arrows show relative magnitude and direction. The peak in
M− amplitude occurs on a gradient of the pump mode magnetic
field near the current channel center.

FIG. 5. Dependence of the observed frequency spectrum on the
polarization of the RMF antenna. Magnetic probe x ¼ 0,
y ¼ −6 cm, z ¼ 2.6 m. Inset: Polarization of the RMF pump
mode from Fig. 1 along a cut at x ¼ 0. B0 ¼ 993 G.
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model outputs the dispersion relation of M1 given a finite
amplitude pump wave propagating parallel to the back-
ground field. Orange curves for unstable modes reveal the
usual decay, beat, and modulational instabilities driven by
the parallel ponderomotive force. Because the modulational
instability involves only forward propogating modes, it is
most consistent with the experimental observations. An
arrow on the figure indicates that the peak growth rate of
the modulational instability occurs for daughter nonreso-
nant modes with ω=k∥ ¼ 0.29 VA. Comparing this value to
the measured dispersion of M1 in Fig. 3, the line falls just
within the upper error bar. Therefore, the fact thatM1 is not

a normal mode of the system is well predicted by modula-
tional instability theory with k⊥ ¼ 0.
The theory also predicts the increase in mode frequency

with pump amplitude seen in Fig. 2. This is shown in panel
(b) of Fig. 6 which plots the frequency of M1 for both the
experimental case in Fig. 2 (blue circles) and the k⊥ ¼ 0
theoretical prediction [6,7] (red stars). Both theory and
experiment follow an upward trend. However, the theo-
retical frequencies are an order of magnitude too low, and
the corresponding growth times are longer than the plasma
discharge; clearly, the parallel ponderomotive force
is too weak to explain the experimental observations.
Furthermore, changing the k⊥ spectrum of the pump wave
by switching to a different antenna (yellow squares) while
keeping other parameters similar results in an increase in
the observed M1 frequency. These observations imply that
perpendicular structure plays a key role in the observed
instability.
Further theoretical development is necessary to fully

explain the observed daughter modes. Wong and Goldstein
[6] and Hollweg [7] predict that the growth rate of the decay
instability should be three orders of magnitude larger than
that of the modulational instability for the LAPD param-
eters under investigation. Yet parametric decay to sound
waves is not observed. Possible reasons include (1) the
growth rates are modified when finite k⊥ is considered and
(2) for the larger values of k∥ characteristic of the decay
instability ion-neutral collisions present in the experiment
significantly reduce the growth rate.
Concerning the effect of finite k⊥, very limited theo-

retical and computational work is available. Numerical
simulations by Del Zanna [39,40] and Matteini et al. [23]
show a reduction in the growth rate of the decay instability
for oblique pump waves, but do not consider the modula-
tional instability. Work by Viñas and Goldstein [41,42]
extends the theory to allow the daughter modes to have
finite k⊥ while retaining k⊥0 ¼ 0 for the pump. This allows
for new classes of instabilities at oblique angles. In
particular, Viñas and Goldstein [42] found a magneto-
acoustic instability with a very narrow band of unstable
wave numbers which is favored at low β and high wave
dispersion (i.e., high ω=Ωi). The oblique nature of the
daughter modes may also explain the Alfvénic character of
the observed nonresonant mode M1. New insight on the
nature of the nonlinear terms may also come from extend-
ing theoretical work by Brugman [43] which examines
copropagating waves, but only with aligned polarizations.
The applicability of these results to the present Letter is
currently under investigation.
In summary, the first laboratory observations of a shear

Alfvén wave parametric instability are presented. A single
finite ω=Ωi, finite k⊥ Alfvén wave is launched above a
threshold amplitude, resulting in three daughter modes: two
forward propagating Alfvén wave sidebands and a forward
propagating nonresonant mode. Frequency and parallel

(a)

(b)

FIG. 6. Comparison between LAPD data and k⊥ ¼ 0
dispersion relation derived by Wong and Goldstein [6] and
Hollweg [7]. (a) Solutions to the dispersion relation of Wong
and Goldstein [6] and Hollweg [7] for experimental parameters of
Fig. 3. Labeled: s: sound mode, −b: backward propagating lower
Alfvénic sideband, −f: forward propagating lower Alfvénic
sideband, þf: forward propagating upper Alfvénic sideband.
Black curves represent stable modes; orange curves representing
unstable modes are labeled with the appropriate instability.
(b) Mode frequency of the modulational instability as a function
of pump amplitude for experimental parameters in Fig. 2 (blue
circles), theoretical predictions (red stars), and strap antenna
results with similar parameters (yellow squares).
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wave number matching relations are satisfied. Although
these features are consistent with the k⊥ ¼ 0 modulational
instability theory, the parallel ponderomotive force that
drives this process cannot explain the growth or
perpendicular spatial profile of the observed daughter
modes. Future theoretical and computational work will
focus on exploring the role of k⊥ in the instability.
Experimental data analysis is ongoing to explore variation
with plasma parameters.
The observations reported here open a significant new

avenue of research to complement extensive theory
[6,7,15–19] and simulation [11,22–25] work on this sub-
ject. Features of the observed instability may provide
guidance to future space observation aimed at assessing
the role of Alfvén wave parametric instabilities in different
regions of the heliosphere, for example, in the ion fore-
shock region of planetary magnetospheres where large
amplitude Alfvén waves are generated by ion beams
[26,27,44]. Because the present results are at low β, they
may be of particular interest to the upcoming Solar Probe
Plus mission aimed at determining what physical processes
are most important in the source region of the solar wind.
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