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We use dynamic coherent backscattering to study one of the Anderson mobility gaps in the vibrational
spectrum of strongly disordered three-dimensional mesoglasses. Comparison of experimental results with
the self-consistent theory of localization allows us to estimate the localization (correlation) length as a
function of frequency in a wide spectral range covering bands of diffuse transport and a mobility gap
delimited by two mobility edges. The results are corroborated by transmission measurements on one of
our samples.
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A quantum particle is trapped in a three-dimensional
(3D) disordered potential if its energy E is lower than the
so-called mobility edge (ME) Ec. As was discovered by
Anderson [1], quantum interferences may increase Ec to
values that are much larger than the classical percolation
threshold, an energy below which a classical particle would
be trapped [2]. The link between Ec and the statistical
properties of disorder has been recently studied in experi-
ments with ultracold atoms in random optical potentials
[3,4]. In contrast to quantum particles, classical waves—
light or sound—may be Anderson localized by disorder
only in a band of intermediate energies (or frequencies), the
impact of disorder becoming weak in both high- and low-
frequency limits [5,6]. One thus expects a mobility “gap”
delimited by two MEs instead of a single ME. This is due
to the difference between dispersion relations of quantum
and classical waves [7,8]. Resonant scattering may further
complicate the spectrum by shifting the mobility gap or
splitting it into several narrower ones. Mobility gaps can
also exist for quantum particles when the disordered
potential is superimposed on a periodic one—a common
situation for electrons in crystals with impurities [9]. In the
present Letter we report the first experimental observation
of a mobility gap for classical waves. To this end we take
full advantage of experimental techniques available for
classical waves but very difficult, if not impossible, to put
in practice for quantum particles and, in particular, for
electrons in disordered conductors. We perform frequency-,
time-, position-, and angle-resolved ultrasonic reflection
and transmission experiments in strongly disordered
“mesoglasses”—elastic networks of brazed aluminum
beads. The results are compared with the self-consistent
theory of localization to precisely locate the two MEs and
to estimate the localization length ξ throughout the mobility
gap. As expected, ξ diverges at the MEs.

Among the many definitions of Anderson localization,
two of them rely either on the exponential decay of
eigenmodes at large distances or the vanishing of diffusion
[10]. However, strictly speaking, both only apply in an
infinite disordered medium and not in experiments which
involve finite samples with often open boundaries. In the
latter case, waves can leak through the sample boundaries
to the surrounding medium; hence, the eigenmodes no
longer decay exponentially at large distances (because
waves propagate freely outside the sample), and the trans-
port is no longer blocked completely, even though wave
diffusion is suppressed exponentially. This is why impor-
tant efforts were devoted in recent years to study signatures
of Anderson localization in finite 3D samples that can be
seen as representative portions of infinite disordered media
in which waves would be Anderson localized. The most
impressive successes were achieved for quantities mea-
sured in transmission where time- and position-resolved
measurements of wave intensity allowed unambiguous
observation of Anderson localization of elastic waves
[11], without complications due to absorption. However,
an important shortcoming of such measurements is the
weakness of transmitted signals that decay exponentially
with sample thickness L making the regime of very strong
localization L=ξ ≫ 1 inaccessible. Even in the diffuse
regime, the transmitted intensity may become so weak
that the measured signal is dominated by other, presumably
weak phenomena (e.g., nonlinear effects or fluorescence
in optics) which can be misinterpreted as a signature of
Anderson localization [12,13].
To circumvent the difficulties of transmission experi-

ments, we develop a new approach to Anderson localiza-
tion of waves based on time- and angle-resolved reflection
measurements. The total reflection coefficient of a thick
disordered sample is close to unity because almost all the
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incident energy is reflected, allowing for comfortable signal
levels even deep in the localized regime. For a plane wave
incident upon a slab of weakly disordered medium,
kl ≫ 1, the average reflection coefficient RðθÞ is known
to be almost Lambertian, but with a two-fold enhancement
within a narrow angular range Δθ ∼ ðk0l�Þ−1 around the
exact backscattering direction θ ¼ 0 [14–18]. Here, k and
k0 are the wave numbers inside and outside the sample,
respectively, and l and l� are the scattering and transport
mean free paths. If the incident wave is a short pulse, the
shape Rðθ; tÞ of this coherent backscattering (CBS) peak
evolves in time, whereas its relative amplitude remains
constant [19–21]. The width Δθ of the CBS peak decreases
with time according to Δθ2 ∝ 1=Dt, where D is the wave
diffusion coefficient, as can be easily found from the
solution of the diffusion equation [18]. CBS is a very
general phenomenon due to constructive interferences of
partial waves that follow time-reversed paths in a disor-
dered medium. It was observed for light in suspensions of
small dielectric particles [14–16] and clouds of cold atoms
[22], sound [20,21], seismic [23], and matter [24] waves.
Being an interference phenomenon, CBS seems natural to
use as a probe of Anderson localization. However, the
stationary (time-integrated) CBS peak was predicted to be
only weakly affected by localization effects, with the most
pronounced effect being the rounding of its tip, which can
also be due to absorption [25]. Optical experiments con-
firmed the rounding of the tip [26,27], but the conclusion
that this behavior was caused by Anderson localization of
light [27] was not supported by transmission measurements
performed on the same or similar samples [28,29]. In this
context, the dynamic CBS is more promising as a probe of
Anderson localization because its shape is independent of
absorption provided the absorption coefficient is spatially
uniform on average, and its width Δθ explicitly depends on
the diffusion coefficient D. In a different context, recent
theoretical work suggests that dynamic CBS of cold atoms
in a random potential may serve as a probe of an Anderson
transition [30].
In this Letter we report measurements of CBS from two

of our mesoglass samples composed of aluminum beads
brazed together (volume fraction ∼55%) to form an elastic
network. The samples have the shape of slabs with cross
sections of 230 × 250 mm2 much larger than thicknesses
L1 ¼ 25� 2 mm and L2 ¼ 38� 2 mm of samples L1 [see
Fig. 1(a)] and L2, respectively. They were waterproofed so
that experiments could be performed in a water tank with
immersion transducers or transducer arrays, and the pores
between the beads held under vacuum during all measure-
ments. The samples are similar to those used in previous
studies [11,31], but instead of being monodisperse, they
have a mean bead diameter of 3.93 mm with a polydisper-
sity of about 20%, which helps to randomize bead
positions. The samples also have stronger elastic bonds
between beads than previous samples, visible in Fig. 1(b).

These differences influence the frequency dependence of
the amplitude transmission coefficient, shown in Fig. 1(c).
Coupling between the individual resonances of the beads
leads to frequency bands of relatively high transmission
whose widths depend on the coupling strength [11,32], but
these bands are narrow enough in our samples to cause
transmission dips to appear in between. The depth and
width of the dips are lessened by the polydispersity and
greater interbead bond strength compared with the mono-
disperse samples.
These dips may correspond to Anderson mobility gaps,

but one has to study the nature of wave transport in the
corresponding frequency ranges to claim anything with
certainty. Here, we report a detailed study of wave transport
around the transmission dip at 1.23 MHz. Ultrasound is
very strongly scattered near this frequency; we have
measured the product kl as small as kl≲ 3. More details
of sample L1 can be found in a previous work [33]. Sample
L2 is too thick and too strongly scattering for many of the
conventional methods of sample characterization in trans-
mission to work. As no detectable coherent signal could be
transmitted through L2 in the frequency range of interest,
measurements of k and l from the coherent pulse [34] are
not possible. However, both samples were fabricated using
the same technique and have very similar composition, so
estimates from coherent measurements on sample L1 are
expected to be a good approximation for L2 as well.
We measure the backscattered intensity using ultrasonic

transducer arrays, placed in the diffuse far field of the
samples (for details, see Ref. [35]). A time-dependent
“response matrix” was gathered by emitting with each
element in turn and recording the time-dependent

(c)

FIG. 1. (a) Sample L1. (b) Bead structure of sample L1.
(c) Amplitude transmission coefficient of ultrasonic waves
through samples L1 and L2 as a function of frequency.
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backscattered field with all elements [21,33]. An average
over configurations of disorder was performed by trans-
lating the array parallel to the sample surface and acquiring
the response matrices for different positions. To obtain
results as a function of both time t and frequency f, the
data were filtered using a Gaussian envelope of standard
deviation 0.015 MHz, centered around f. As has been
previously reported [33], these backscattering data show
significant contributions from recurrent scattering due to
the signal entering and leaving the sample near the same
spot [33,36]. Recurrent scattering complicates the analysis
of CBS peaks, as it is difficult to determine the (roughly
flat) background intensity level corresponding to large
angles θ. The recurrent scattering contribution was
removed from the total backscattered intensity following
the approach developed previously [33].
To eliminate the effect of absorption, the time-dependent

CBS profiles Rðθ; tÞ, where θ is the angle between
source and receiver elements of the ultrasonic array, are
normalized by Rð0; tÞ [35]. Analogously to transverse
confinement measurements in transmission [11], absorp-
tion cancels in the ratio Rðθ; tÞ=Rð0; tÞ. Representative
profiles Rðθ; tÞ=Rð0; tÞ are shown in Fig. 2.

To obtain a quantitative description of our data, we use
the self-consistent (SC) theory of Anderson localization
with a position-dependent diffusion coefficient Dðz;ΩÞ
presented in Refs. [38,39]. First, Dðz;ΩÞ is determined
from an iterative solution of the self-consistent equations
for each depth z inside the sample (0 ≤ z ≤ L). Second, the
two-dimensional spatial Fourier transform of the intensity
Green’s function Cðq⊥; z; z0 ¼ l�

B;ΩÞ is calculated using
this Dðz;ΩÞ. Here, l�

B is the transport mean free path in
the absence of Anderson localization effects. Finally,
the CBS profile Rðθ; tÞ is obtained as a Fourier transform
of Rðq⊥;ΩÞ ¼ Dðz ¼ 0;ΩÞ∂Cðq⊥; z; z0 ¼ l�

B;ΩÞ=∂zjz¼0,
where q⊥ ¼ k0 sin θ [35]. Fits to the experimental data
obtained from this theory are shown in Fig. 2(c). We refer
the reader to Ref. [35] for the details of the fitting
procedure. For a given frequency f, important outcomes
of the fitting procedure are the location of f with respect to
the ME fc (indicating whether wave transport at f is
extended or localized) and the value of the localization
length ξ that characterizes the closeness to a ME and the
extent of localization effects [40].
CBS profiles shown in Figs. 2(a) and 2(b) exhibit the

narrowing with time predicted by the diffusion theory.
However, when approaching f ¼ 1.20 MHz and beyond,
the narrowing of CBS profiles slows down considerably
[see Figs. 2(c) and 2(d) and Fig. S1 of Ref. [35]]. This
slowing down cannot be described by diffusion theory [35]
but is the expected behavior when a ME of the Anderson
transition is approached and crossed because the width of
the CBS peak Δθ behaves, roughly speaking, as the inverse
width of the diffuse halo at the surface of the sample. The
latter grows without limit in the diffuse regime but cannot
exceed a value on the order of the localization length ξ in
the localized regime. Hence, the corresponding CBS profile
stops shrinking and its width Δθ saturates. This is illus-
trated in Fig. 3 where the different types of behavior can be
clearly distinguished.
We performed systematic fits of SC theory to our data for

frequencies from 1.17 to 1.27 MHz for both samples L1
and L2, thereby determining the frequency dependencies
of the localization (correlation) length ξ. The results are
shown in Fig. 4 where MEs at approximately 1.20 and
1.24 MHz are indicated by fuzzy vertical gray lines. The
Anderson mobility gap is clearly visible in between,
whereas the wave transport is subdiffusive for frequencies
below 1.20 and above 1.24 MHz. Other and possibly
multiple mobility gaps can exist in our samples outside the
frequency range from 1.17 to 1.27 MHz that we explored.
It is important to note that although the position of the
Anderson mobility gap that we have found coincides with
one of the dips in the transmission spectra of Fig. 1(c), the
latter is not sufficient to claim the existence of the former.
Indeed, a dip in transmission can simply correspond to
spectral regions with a low density of states—precursors of
band gaps in larger samples. It is important to prove that the

FIG. 2. Dynamic CBS profiles in the diffuse regime
(1.65 MHz) (a,b) and in the localized regime (1.22 MHz)
(c,d). The results in (a,b) are for sample L1, and in (c,d) for
sample L2 (note the different angular scales). In (a,c) theoretical
fits (lines) and experimental data (symbols) are shown for three
representative times. In (a), the data are fitted using diffusion
theory, giving diffusion coefficient D ¼ DB ¼ 0.7 mm2=μs [37],
whereas in (c) SC theory is used, giving ξ ¼ 16.5 mm. Addi-
tional examples are shown in Ref. [35]. In (b,d) experimental
CBS profiles are shown as a function of both time and angle. The
profile narrows quite rapidly in the diffuse regime (b) but is
almost constant over the accessible range of times in the localized
regime (d).
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wave transport corresponds to strongly suppressed diffu-
sion that is consistent with Anderson localization, in order
to claim an Anderson mobility gap. This is achieved
here by comparing experimental results with SC theory
of localization.
To support our conclusions based on CBS measure-

ments, we performed complementary experiments and

analysis in transmission on sample L1. We used the
technique of transverse confinement, which has been
previously established as an unambiguous method of
observing localization [11]. The experimental method
and comparison of measurements with SC theory have
been presented in detail in Refs. [11,41,42]. As can be seen
in Fig. 4, the results of transmission and reflection experi-
ments agree reasonably well. From the combination of
these measurements we estimate the position of MEs to be
1.198� 0.001 MHz and 1.243� 0.007 MHz. Inside the
mobility gap the measured localization length reaches a
minimum of 6.5 mm (3.8 times smaller than sample
thickness). The CBS results fluctuate much more with
frequency, as do the CBS profiles themselves, especially
around the upper ME where the position of the ME is less
clear than for the lower ME. While large fluctuations are
to be expected in this regime, the precision of future
measurements could be improved with a greater amount
of configurational averaging, longer measurement times,
and a wider angular array aperture.
Figure 4 may be used to estimate the critical exponent of

the localization transition ν because one expects ξðfÞ ∝
jf − fcj−ν for f in the vicinity of a ME fc. As can be seen in
Fig. 4, L=ξ looks approximately linear as a function of f
when it crosses the axis L=ξ ¼ 0, leading to ν ≈ 1. It should
be understood, however, that this result has large uncer-
tainties due to the spread of data points in Fig. 4 (especially
at the upper ME). In addition, Fig. 4 is obtained by fitting
the experimental data with SC theory, which is known to
yield ν ¼ 1 in contradiction with numerical calculations
[43] and may thus bias the result. More work is needed to
obtain accurate estimates of ν for the localization transitions
reported here.
In conclusion, we have employed the dynamic CBS

effect to demonstrate an Anderson mobility gap in the
spectrum of ultrasound scattered in a 3D strongly disor-
dered elastic network. Performing our measurements in
reflection instead of transmission as in previous works
[11,31] ensured a sufficiently strong signal throughout
the mobility gap, even for a very thick sample. This is a
significant advance, as previous experiments were only
able to reveal a single mobility edge [31]. Fits to the data by
the self-consistent theory of localization yielded precisely
the locations of the two mobility edges that serve as bounds
of the mobility gap, and the localization length ξ as a
function of frequency. We were able to corroborate these
results via transmission measurements on one of our
samples. This work demonstrates the potential of dynamic
CBS experiments to study localization effects in thick
samples where transmission measurements are difficult
or impossible, allowing us to access the deeply localized
regime where ξ ≪ L. The thickness independence of
backscattering in a wide range of times provides an
important advantage in the investigation of critical behavior
where the elimination of finite-size effects is desired. This

FIG. 3. Experimental results (symbols) and theoretical predic-
tions (lines) for sample L1. Plotted is the reciprocal of the square
of the half width at half maximum of the CBS peaks, Δθ−2ðtÞ
(error bars are smaller than symbol sizes). Three representative
frequencies are shown: f ¼ 1.65 MHz (diffuse regime, diffusion
coefficient DB ¼ 0.7 mm2=μs extracted from the fit), f ¼
1.18 MHz (subdiffusion as a ME is approached; correlation
length ξ ¼ 2.1 mm), and f ¼ 1.22 MHz (Anderson localization;
localization length ξ ¼ 12.5 mm). The inset shows theoretical
predictions for longer times.

FIG. 4. The ratio of sample thickness L to the localization
(correlation) length ξ obtained from fits to experimental CBS
profiles (sample L1—red stars, sample L2—green squares) and
transverse confinement (TC) data (sample L1—open circles).
Error bars represent variations of L=ξ that increase the reduced
χ2 by unity; error bars are smaller than symbol size for trans-
mission results. Fuzzy vertical gray lines show our estimates of
mobility edges.
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approach, made possible by a combination of modern
experimental techniques with a careful theoretical descrip-
tion, can be extended to other classical waves (light,
microwaves) as well.
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