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We study three-body recombination of Baþ þ Rbþ Rb in the mK regime where a single 138Baþ ion
in a Paul trap is immersed into a cloud of ultracold 87Rb atoms. We measure the energy dependence of the

three-body rate coefficient k3 and compare the results to the theoretical prediction, k3 ∝ E−3=4
col , where Ecol

is the collision energy. We find agreement if we assume that the nonthermal ion energy distribution is
determined by at least two different micromotion induced energy scales. Furthermore, using classical
trajectory calculations we predict how the median binding energy of the formed molecules scales with the
collision energy. Our studies give new insights into the kinetics of an ion immersed in an ultracold atom
cloud and yield important prospects for atom-ion experiments targeting the s-wave regime.

DOI: 10.1103/PhysRevLett.116.193201

When three atoms collide, a diatomic molecule can
form in a three-body recombination (TBR) process. In
cold neutral atomic gases, TBR was investigated for spin-
polarized hydrogen as well as alkalis (see, e.g., [1–3]).
In the context of Bose-Einstein condensation, TBR plays a
crucial role as a main loss mechanism. By now, the scaling
of TBR as a function of collision energy and scattering
lengths in neutral ultracold gases has been investigated in
detail [4]. When considering TBR in atom-ion systems, one
can expect three-body interactions to be more pronounced
due to the underlying longer-range r−4 polarization poten-
tial. Energy scaling of TBR in charged gases was studied at
temperatures down to a few K, especially for hydrogen and
helium due to their relevance in plasmas and astrophysics
(see, e.g., [5,6]). Depending on the studied temperature
range a variety of power laws was found but not a common
threshold law. The recent development of novel hybrid
traps for both laser cooled atoms and ions has opened the
possibility to investigate cold atom-ion interactions and
chemical reactions in the mK regime and below. First
experiments in such setups studied elastic and reactive two-
body collisions (see, e.g., [7–14]). In accordance with the
well-known Langevin theory, the corresponding reactive
rates were measured to be independent of the collision
energy [8,10]. Very recently we predicted a theoretical
threshold law on the scaling properties for cold atom-atom-
ion three-body collisions [15]. Understanding the scaling
of reaction rates with quantities such as the collision energy
is crucial for fundamentally understanding TBR and for
the prospects of the experimental realization of ultracold
s-wave atom-ion collisions. Furthermore, as we show here,
studying TBR allows for insights into the kinetics of an ion
immersed in a cloud of atoms. Experimentally, TBR in the

mK regime was recently observed for Rbþ þ Rbþ Rb [16]
and Baþ þ Rbþ Rb [17]. In the Baþ experiments TBR
was already dominating over two-body reactions even for
moderate atomic densities of 1012 cm−3.
This Letter reports on the combined theoretical and

experimental investigation of the energy scaling of three-
body atom-atom-ion collisions in the mK regime. We
measure the TBR rate coefficient k̄3 of Baþ in an ultracold
Rb cloud as a function of the mean collision energy of the
ion, Ēcol, which we control via the excess micromotion
(eMM) of the Paul trap. k̄3 is formally distinguished from
k3, which is the TBR rate coefficient for a precise collision
energy Ecol in the center-of-mass frame. By averaging k3
over the ion energy distribution k̄3 is obtained. We calculate
k3 using classical trajectory calculations (CTC) [15,18] and

derive its energy scaling, k3 ∝ E−3=4
col . Agreement is found

between theory and experiment if we assume that the
energy distribution of the ion depends on multiple energy
scales due to various sources of excess micromotion.
Besides the prediction of k3, the CTC calculations also
provide the binding energy distribution of the formed
molecules and the scaling properties of these distributions
when the collision energy is varied.
The experiments are performed in a hybrid apparatus that

has already been described in detail elsewhere [19]. After
loading a single 138Baþ ion by isotope selective, resonant
two-photon ionization, it is stored in a linear Paul trap
driven at a frequency of 4.21 MHz with radial and axial
trapping frequencies of ðωr;ωaÞ ¼ 2π × ð59.5; 38.4Þ kHz,
respectively. There, it is laser cooled to Doppler temper-
atures of ≈0.5 mK. In order to perform our experiments in
the electronic ground state, we switch off the cooling and
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repumper light, before immersing the ion into the ultracold
atomic cloud.
Once in the cloud, there is a complicated interplay

of elastic two-body atom-ion collisions and the driven
micromotion of the Paul trap. This interplay leads to a non-
Maxwell-Boltzmann distribution of the ion’s kinetic energy
Ekin [8,20–22] with an equilibration time on the ms time
scale [23]. The average kinetic energy Ēkin of the ion in the
atom cloud is then determined by the available energy
sources for the ion, such as the eMM energy [8]. In our
experiment we can adjust Ēkin by controlling one part of the
eMM energy, EfMM, which is set via static electric fields.
Concretely, we can write Ēkin ¼ cdynðEfMM þ EminÞ, where
the offset energy Emin contains all other energy contribu-
tions, e.g., phase micromotion (ϕMM) [24] or residual
collisional effects [21,22]. The proportionality factor
cdyn ≈ 5.0, which depends on the atom-ion mass ratio
and the trap parameters, is extracted from a MC calculation
similar to [25]. We can tune EfMM accurately between
5μK × kB and 100 mK × kB. Emin, on the other hand, is
not known precisely. From independent measurements and
MC calculations based on the scaling of elastic atom-ion
collisions, we estimate Emin to be in the range between 200
and 800 μK × kB.
The cloud consists of N ≈ 1.2 × 105 87Rb atoms at a

temperature of T ≈ 700 nK with a peak density of
n ≈ 19 × 1011 cm−3. It is cigar shaped with a radial and
axial size of roughly 10 and 50 μm, respectively. The atoms
are spin polarized (F ¼ 1, mF ¼ −1) and confined in a far
off-resonant crossed optical dipole trap at a wavelength of
1064 nm with a trap depth of ≈10 μK × kB. We shift the
ion into the cloud over a distance of 120 μmwithin 2 ms by
changing the end cap voltage of the linear ion trap. After an
interaction time of τ ¼ 300 ms, during which the Baþ ion
is typically lost with a probability of up to 65%, we separate
the two traps again and detect whether the Baþ ion is still
present. For this, we shine a laser cooling beam focused
to a waist of 20 μm through the Paul trap center and collect
the possible fluorescence on a EMCCD camera for 100 ms.
If no Baþ is detected, we conclude that a reaction must
have taken place during τ [26].
Repeating the single ion experiment roughly 170 times

we extract the probability p that Baþ is still present. For the
given experimental settings the ion loss is well described by
an exponential decay of the form p ¼ expð−ΓτÞ. This can
be seen in the inset of Fig. 1, where we plot p as a function
of interaction time τ measured at EfMM ≈ 8 μK. Figure 1
plots the loss rate Γ as a function of EfMM. A Baþ ion in
our experiment is lost either by a two-body charge transfer
or by a three-body event [17]. The corresponding loss rate Γ
of the ion is Γ ¼ −nk2 − n2k̄3. The charge transfer rate
coefficient k2 has been previously measured for Baþ þ Rb,
k2 ¼ 3.1ð6Þð6Þ × 10−13 cm3=s (statistical and systematic
errors in parentheses) [17] (see also [9,27]), and contributes
less than 1 s−1 to the loss rate Γ for the given atomic

density. Also, it has been verified that k2 is energy
independent [7,8,10], consistent with Langevin theory. By
subtracting this constant k2 loss from Γ and dividing by the
(constant) density n2 we obtain k̄3 [see Figs. 1 and 3(b)].
Clearly, k̄3 is energy dependent. As we discuss later,
we expect a scaling of k3 with a power law, k3 ∝ Eα

col.
Neglecting the atom motion due to ultracold temperatures
we can express Ecol in terms of the ion kinetic energy
Ekin, Ecol ¼ f1 − ½mBa=ðmBa þ 2mRbÞ�gEkin. We attempt to
describe the scaling of the measured k̄3 with a power
law k̄3 ∝ Ēα

kin by fitting the expression

k̄3 ¼ k̄3;min½ðEfMM þ EminÞ=Emin�α ð1Þ

to the data.Here,Emin andα are free parameters. The constant
k̄3;min ¼ 1.04ð4Þð45Þ × 10−24 cm6=s is k̄3 at EfMM ¼ 0 and
was determined in a parallel study [17]. For the fit we discard
data points aboveEfMM > 20 mK× kB, as for such energies,
the ion is not localizedwell enough in the center of the cloud.
It probes areas of the atomic cloud at lower densities, hence
decreasing the observed loss rate (see the sketch in Fig. 1).
The fit yields α ¼ −0.46ð9Þ and Emin ¼ 410ð180Þ μK × kB
(green dashed line in Fig. 1), with the errors denoting a 1σ
statistical uncertainty of the fitted values. Interestingly, in our
previous study of TBR of Rbþ þ Rbþ Rb [16] we observed
a similar scaling exponent of α ¼ −0.43.
We now turn to investigate the scaling of TBR theoreti-

cally with a CTC formalism. A classical treatment of the
collision dynamics is appropriate, since the experiments
described here in general involve much higher energies
than the threshold energy of ∼50 nK × kB for entering the
s-wave regime of Baþ − Rb. We have adapted a recently
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FIG. 1. Double-logarithmic plot of the measured loss rate Γ for
Baþ as a function of the tuned eMM energy EfMM. Red circles are
the experimental data; the curve represents a fit of Eq. (1) (see text
for details). The corresponding values of k̄3 are indicated on the
right-hand side. The inset is the Logarithmic plot of the decay
curve of the Baþ ion. p is the probability to recover Baþ after
interacting with Rb. The straight line is an exponential fit to the
data. The sketch shows the ion orbit in the atom cloud. With
increasing ion energy its orbit becomes comparable to the atom
cloud size.
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developed method for the calculation of three-body recom-
bination cross sections based on classical trajectories
[15,18] for the study of atom-atom-ion recombination.
The method employed relies on mapping the three-body
problem into a six-dimensional configuration space,
described in hyperspherical coordinates, after separating
out the center-of-mass motion [18]. Since the kinetic
energy of the ion is typically several orders of magnitude
higher than the temperature of the ultracold neutral atoms
we fix one of the hyperangles associated to the ratio of
the atom-ion versus the atom-atom initial momentum,
guaranteeing that in the center-of-mass coordinate system
95% of the collision energy Ecol is along the direction of
the ion. In the classical trajectory calculations only Rb-Rb
collisions in triplet states are considered and spin flip
transitions are neglected. For the Rb-Rb pair interaction we
employ the a3Σþ

u potential of Strauss et al. [28]. On the
other hand, the Baþ − Rb interaction potential is taken to
be −C4ð1 − ðrm=rÞ4=2Þ=r4, where C4 ¼ 160 a.u. denotes
the experimental long-range value of the interaction and rm
represents the position of the minimum of the potential,
taken from Ref. [29].
The TBR rate for Baþ þ Rbþ Rb has been computed

by running 105 trajectories per collision energy. We
checked that during the simulation the total energy and
angular momentum are conserved up to the fifth decimal
place. Details about the numerical method employed to
solve Hamilton’s equations of motion, in conjunction
with the sampling of the initial conditions, can be found
in [18]. Figure 2(a) shows a three-body trajectory that
results in a recombination event with a collision energy of
100 μK × kB. This particular trajectory leads to a large size
(∼800 a0), very weakly bound molecular ion. Counting the
fraction of trajectories that lead to molecule formation we
can extract the TBR rate coefficient k3 for Baþ þ Rbþ Rb.
Figure 2(b) plots k3 as a function of collision energy Ecol.
We compare these CTC calculations (diamonds) with an
analytically derived scaling law [15] where k3 ∝ E−3=4

col
[dashed line in Fig. 2(b)] and find very good agreement.
Strikingly, the theory prediction of α ¼ −0.75 does

not seem to agree well with the experimentally observed
value of α ¼ −0.46ð9Þ from the fit of Eq. (1) to our data.
We explain this discrepancy as follows. In contrast to
the theoretical approach where k3 is determined for a
precisely defined collision energy Ecol, in the experiments
we observe k̄3, an average over a distribution PðEcol; fES

i gÞ
of collision energies, calculated as

k̄3ðfES
i gÞ ¼

Z
k3ðEcolÞPðEcol; fES

i gÞdEcol: ð2Þ

Here, fES
i g is a list of the relevant energy scales that

determine the distribution, such as the experimentally tuned
EfMM or EϕMM. We extract these distributions with a MC
calculation based on [25]. If only a single scale ES

1 is

present, the energy distributions can be expressed as
functions of the ratio Ecol=ES

1 ,

PðEcol; ES
1ÞdEcol ¼ ~PðEcol=ES

1ÞdEcol=ES
1: ð3Þ

Figure 3(a) shows three calculated distributions, each with
its own scale ES

1 . The distributions PðEcol; EfMMÞ for
EfMM ¼ 1 mK (green) and 20 mK (red) have the exact
same shape, a consequence of Eq. (3). The third distribu-
tion PðEcol; EϕMM ¼ 1 mKÞ (blue), generated with a phase
micromotion, has a somewhat different shape. Using
Eq. (2) one can show that distributions that satisfy Eq. (3)
translate the power law k3 ∝ E−3=4

col into k̄3 ∝ ðES
1Þ−3=4. In

our experiment, however, where at least two energy scales,
EfMM and Emin, occur, this translation of the scaling breaks
down and Eq. (1) cannot be used in the data analysis
anymore. Instead, we calculate k̄3 with Eq. (2) to directly
compare theory and experiment. The choice and magnitude
of Emin is the only free model parameter. Here, we assume
that Emin is entirely determined by phase micromotion,
Emin ¼ EϕMM. The phase micromotion is chosen to be
shared equally between both pairs of opposing radio
frequency (rf) driven electrodes [24]. Figure 3(b) shows
the experimental k̄3 (full circles), together with the calcu-
lation (blue solid line) with EϕMM ¼ 790 μK [30].
The shape of the theory curve describes the experimental
data quite well, apart from an overall factor of about 1.1
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FIG. 2. (a) A typical trajectory at a collision energy of
100 μK × kB associated with the three-body collision Baþ þ
Rbþ Rb that leads to the formation of BaRbþ. We show the
distances rij between the particles as indicated in the sketch.
(b) Double log plot of k3 obtained with CTC for Baþ þ Rbþ Rb
as a function of the collision energy Ecol (circles). The straight
line shows the analytically predicted power-law dependence
k3 ∝ E−3=4

col .
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(see blue and red solid lines). In general, the overall
magnitude and energy dependence of k̄3 is reproduced
by the presented ab initio CTC treatment down to the mK
regime, which is remarkable as Emin is the only free
parameter.
We now turn to briefly discuss the molecular products

after TBR. In a previous study of TBR for He, it was
suggested that the binding energy of the products is
correlated with the collision energy [18]. We find again
the same behavior for TBR of an ion with two atoms.
Figure 4(a) shows two logarithmically binned histograms
of molecular binding energies after TBR. The maximum
of each histogram can be considered the typical binding
energy and is shown in Fig. 4(b) as a function of the
collision energy Ecol. A fit to a power-law dependence gives
Ebinding ∼ E0.88�0.02

col for the energy range investigated here.
Thus, our calculations suggest that the formation of deeply
bound molecules after TBR should be highly improbable
at low collision energies.
The present CTC results also suggest that BaRbþ should

be the dominant product state of the three-body recombi-
nation in the collision energy range considered here.
Indeed, we have observed the formation of BaRbþ ions
in our experiment. However, collisional or light induced
secondary processes lead to short lifetimes. A detailed
study of the initial TBR products and involved secondary
reactions is currently in progress and needs to be discussed
elsewhere.

In conclusion, we have investigated the energy scaling of
three-body recombination in an atom-ion system down
to mK energies. Single Baþ ions in contact with ultracold
Rb atoms have been used to measure the TBR rate
coefficient k̄3. Utilizing classical trajectory calculations,
we numerically accessed the TBR rate coefficient k3 for the
Baþ þ Rbþ Rb system for various collision energies. We
find a power law scaling of the form k3ðEcolÞ ∝ Eα

col with an
exponent α ¼ −3=4. Our experimental and theoretical
studies indicate that the presence of several energy scales
gives rise to energy distributions of the immersed ion that
impede a direct application of scaling laws to the measured
data. The obtained energy scaling provides an important
insight for prospects of atom-ion experiments in the ultra-
cold regime, as the already strong TBR rate observed here
will increase by another three orders of magnitude once the
s-wave regime at 50 nK is reached.

This work was supported by the German research foun-
dation Deutsche Forschungsgemeinschaft (DFG) Grant
No. SFB/TRR21 and by the U.S. Department of Energy,
Office of Science, under Award No. DE-SC0010545. A. K.
acknowledges support from the Carl Zeiss Foundation.
J. P.-R. and C. H. G. thank Francis Robicheaux for many
fruitful discussions. J. H. D. and C. H. G. acknowledge
inspiring interactions within program INT-14-1.

[1] H. F. Hess, D. A. Bell, G. P. Kochanski, R. W. Cline, D.
Kleppner, and T. J. Greytak, Phys. Rev. Lett. 51, 483 (1983).

[2] E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A.
Cornell, and C. E. Wieman, Phys. Rev. Lett. 79, 337 (1997).

10 3 10 1 101 103

10 8

10 5

10 2

Ecol mK kB

P
E

co
l
,E

1S
(a)

10 2 10 1 100 101

0.1

1.0

0.2

0.3

0.5

EfMM mK kB

k 3
10

24
cm

6 s
1

(b)

FIG. 3. (a) Calculated ion energy distributions PðEcol; ES
1Þ,

each with a single energy scale ES
1 . An energy of ES

1 ¼ EfMM ¼
1 mK (20 mK) was used for the green (red) distribution.
Choosing ES

1 ¼ EϕMM ¼ 1 mK produces the blue distribution,
which has a different shape compared to both previous distribu-
tions. (b) Comparison of the experimental (full circles) k̄3 data as
a function of EfMM with the full calculation (blue line). The red
line is the same calculation but multiplied by 1.1.

10 4 10 2 100 102 104
0

2

4

Ebinding mK

co
un

ts
10

3

(a)
2

10 1 100 101

10 1

100

101

Ecol mK kB

E
bi

nd
in

g
m

K
k B

(b)

FIG. 4. (a) Logarithmically binned histogram of the binding
energies at collision energies of 100 μK × kB (blue) and
10 mK × kB (red). The second histogram is magnified by a
factor of 2. (b) Double-logarithmic plot of the typical binding
energy of the formed molecule as a function of the collision
energy. The dashed line represents a power law fit.

PRL 116, 193201 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
13 MAY 2016

193201-4

http://dx.doi.org/10.1103/PhysRevLett.51.483
http://dx.doi.org/10.1103/PhysRevLett.79.337


[3] B. D. Esry, C. H. Greene, and J. P. Burke, Phys. Rev. Lett.
83, 1751 (1999).

[4] J. P. D’Incao and B. D. Esry, Phys. Rev. Lett. 94, 213201
(2005).

[5] P. S. Krstić, R. K. Janev, and D. R. Schultz, J. Phys. B 36,
L249 (2003).

[6] R. Plašil, I. Zymak, P. Jusko, D. Mulin, D. Gerlich, and
J. Glosík, Phil. Trans. R. Soc. A 370, 5066 (2012).

[7] A. T. Grier, M. Cetina, F. Oručević, and V. Vuletić, Phys.
Rev. Lett. 102, 223201 (2009).

[8] C. Zipkes, S. Palzer, L. Ratschbacher, C. Sias, and M. Köhl,
Phys. Rev. Lett. 105, 133201 (2010).

[9] S. Schmid, A. Härter, and J. Hecker Denschlag, Phys. Rev.
Lett. 105, 133202 (2010).

[10] F. H. J. Hall, M. Aymar, N. Bouloufa-Maafa, O. Dulieu, and
S. Willitsch, Phys. Rev. Lett. 107, 243202 (2011).

[11] S. T. Sullivan, W. G. Rellergert, S. Kotochigova, and E. R.
Hudson, Phys. Rev. Lett. 109, 223002 (2012).

[12] K. Ravi, S. Lee, A. Sharma, G. Werth, and S. A. Rangwala,
Nat. Commun. 3, 1126 (2012).

[13] I. Sivarajah, D. S. Goodman, J. E. Wells, F. A. Narducci, and
W.W. Smith, Phys. Rev. A 86, 063419 (2012).

[14] S. Haze, S. Hata, M. Fujinaga, and T. Mukaiyama, Phys.
Rev. A 87, 052715 (2013).

[15] J. Pérez-Ríos and C. H. Greene, J. Chem. Phys. 143, 041105
(2015).

[16] A. Härter, A. Krükow, A. Brunner, W. Schnitzler, S.
Schmid, and J. Hecker Denschlag, Phys. Rev. Lett. 109,
123201 (2012).

[17] A. Krükow, A. Mohammadi, A. Härter, and J. Hecker
Denschlag, arXiv:1602.01381.

[18] J. Pérez-Ríos, S. Ragole, J. Wang, and C. H. Greene,
J. Chem. Phys. 140, 044307 (2014).

[19] S. Schmid, A. Härter, A. Frisch, S. Hoinka, and J. Hecker
Denschlag, Rev. Sci. Instrum. 83, 053108 (2012).

[20] R. G. DeVoe, Phys. Rev. Lett. 102, 063001 (2009).
[21] M. Cetina, A. T. Grier, and V. Vuletić, Phys. Rev. Lett. 109,

253201 (2012).
[22] M. Krych and Z. Idziaszek, Phys. Rev. A 91, 023430

(2015).
[23] The equilibration time can be estimated from the

Langevin collision rate, which at our given density is about
4 ms−1.

[24] D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano,
and D. J. Wineland, J. Appl. Phys. 83, 5025 (1998).

[25] C. Zipkes, L. Ratschbacher, C. Sias, and M. Köhl, New J.
Phys. 13, 053020 (2011).

[26] We note that our detection scheme cannot detect a reaction if
the final product (e.g., after a secondary process) is again a
cold Baþ ion. From parallel experiments where we inves-
tigate the reaction products, however, we have no evidence
for such a reaction outcome. In fact, our present work shows
good agreement between theory and experiment if we
assume that a reaction channel producing cold Baþ ions
is negligible.

[27] F. H. Hall, M. Aymar, M. Raoult, O. Dulieu, and S.
Willitsch, Mol. Phys. 111, 1683 (2013).

[28] C. Strauss, T. Takekoshi, F. Lang, K. Winkler, R. Grimm,
J. Hecker Denschlag, and E. Tiemann, Phys. Rev. A 82,
052514 (2010).

[29] M. Krych, W. Skomorowski, F. Pawłowski, R. Moszynski,
and Z. Idziaszek, Phys. Rev. A 83, 032723 (2011).

[30] Such a phase micromotion can be caused by a relative length
difference of Δl=l ≈ 10−3 between the cables supplying
opposing rf electrodes, which is well within the tolerances
of our setup.

PRL 116, 193201 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
13 MAY 2016

193201-5

http://dx.doi.org/10.1103/PhysRevLett.83.1751
http://dx.doi.org/10.1103/PhysRevLett.83.1751
http://dx.doi.org/10.1103/PhysRevLett.94.213201
http://dx.doi.org/10.1103/PhysRevLett.94.213201
http://dx.doi.org/10.1088/0953-4075/36/16/103
http://dx.doi.org/10.1088/0953-4075/36/16/103
http://dx.doi.org/10.1098/rsta.2012.0098
http://dx.doi.org/10.1103/PhysRevLett.102.223201
http://dx.doi.org/10.1103/PhysRevLett.102.223201
http://dx.doi.org/10.1103/PhysRevLett.105.133201
http://dx.doi.org/10.1103/PhysRevLett.105.133202
http://dx.doi.org/10.1103/PhysRevLett.105.133202
http://dx.doi.org/10.1103/PhysRevLett.107.243202
http://dx.doi.org/10.1103/PhysRevLett.109.223002
http://dx.doi.org/10.1038/ncomms2131
http://dx.doi.org/10.1103/PhysRevA.86.063419
http://dx.doi.org/10.1103/PhysRevA.87.052715
http://dx.doi.org/10.1103/PhysRevA.87.052715
http://dx.doi.org/10.1063/1.4927702
http://dx.doi.org/10.1063/1.4927702
http://dx.doi.org/10.1103/PhysRevLett.109.123201
http://dx.doi.org/10.1103/PhysRevLett.109.123201
http://arXiv.org/abs/1602.01381
http://dx.doi.org/10.1063/1.4861851
http://dx.doi.org/10.1063/1.4718356
http://dx.doi.org/10.1103/PhysRevLett.102.063001
http://dx.doi.org/10.1103/PhysRevLett.109.253201
http://dx.doi.org/10.1103/PhysRevLett.109.253201
http://dx.doi.org/10.1103/PhysRevA.91.023430
http://dx.doi.org/10.1103/PhysRevA.91.023430
http://dx.doi.org/10.1063/1.367318
http://dx.doi.org/10.1088/1367-2630/13/5/053020
http://dx.doi.org/10.1088/1367-2630/13/5/053020
http://dx.doi.org/10.1080/00268976.2013.770930
http://dx.doi.org/10.1103/PhysRevA.82.052514
http://dx.doi.org/10.1103/PhysRevA.82.052514
http://dx.doi.org/10.1103/PhysRevA.83.032723

