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The formalism based on factorization and nuclear spectral functions has been generalized to treat
transition matrix elements involving two-nucleon currents, whose contribution to the nuclear electro-
magnetic response in the transverse channel is known to be significant. We report the results of calculations
of the inclusive electron-carbon cross section, showing that the inclusion of processes involving two-
nucleon currents appreciably improves the agreement between theory and data in the dip region, between
the quasielastic and Δ-production peaks. The relation to approaches based on the independent particle of
the nucleus and the implications for the analysis of flux-integrated neutrino-nucleus cross sections are
discussed.
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The nuclear response to electromagnetic interactions is
determined by a variety of mechanisms—reflecting both
nuclear and nucleon excitation modes—whose contribu-
tions strongly depend on the energy and momentum
transfer, ω and q.
In the kinematical region corresponding to jqj ≳ π=d,

with d being the average nucleon-nucleon (NN) distance,
interactions predominantly involve individual nucleons and,
depending on energy transfer, may give rise to different
hadronic final states. At ω ≈Q2=2m, where Q2 ¼ q2 − ω2

and m is the nucleon mass, the dominant mechanism is
quasielastic scattering, in which the nucleon is left in its
ground state and no π mesons are produced. With increasing
ω, the composite nature of the nucleon shows up through the
excitation of resonances—the most prominent of which is
the Δ, with mass mΔ ¼ 1232 MeV—and breakup of the
nucleon itself, followed by hadronization of the debris. The
corresponding final states are characterized by the presence
of one or more π mesons, respectively.
Reaction mechanisms involving two target constituents—

for example, the process in which the virtual photon couples
to a meson exchanged between interacting nucleons—also
play an important role in determining the nuclear response in
the transverse channel. They have long been shown to
provide a significant amount of strength in the dip region,
between the quasielastic and Δ-production peaks [1].
The occurrence of two-nucleon components in the

nuclear electromagnetic current is dictated by current
conservation and isospin dependence of nuclear inter-
actions [2]. Therefore, a coherent treatment of one- and
two-nucleon current contributions, including the effects of
interference between the corresponding transition matrix
elements, is needed to achieve a complete description of the
observed electron-nucleus cross sections.

The ab initio approach based on nuclear many-body
theory and realistic nuclear Hamiltonians—strongly con-
strained by the properties of two- and three-nucleon
systems—provides a fully consistent framework for the
calculation of the nuclear electromagnetic responses in the
regime of low to moderate momentum transfer, typically
jqj≲ 500 MeV, in which the nuclear initial and final states
can be described within the nonrelativistic approximation,
and the nonrelativistic reduction of the currents is expected
to be applicable [3–7].
At high momentum transfer, however, neither the nuclear

final state nor the current can be treated using the non-
relativistic formalism, because the former involves at least
one nucleon carrying large momentum, ∼q, while the latter
explicitly depends on q. To circumvent this difficulty,
theoretical calculations of the two-nucleon current contri-
butions to the nuclear cross section have been carried out
within somewhat oversimplified models, in which relativistic
effects are taken into account at the expense of a realistic
description of nuclear structure and dynamics [8–11].
The formalism based on factorization of the nuclear

transition matrix elements [12–14] allows us to combine a
fully relativistic description of the electromagnetic inter-
action with an accurate treatment of nuclear dynamics, in
which the effect of NN correlations is properly taken into
account. This scheme, providing a remarkably accurate
description of the available data in the kinematical region
in which quasielastic single-nucleon knockout is the
dominant reaction mechanism [15], has been recently
generalized to include the contributions of the two-nucleon
currents [16].
The analysis of Ref. [16] was restricted to the electro-

magnetic response of carbon in the transverse channel at
fixed momentum transfer jqj ¼ 570 MeV, and neglected
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final state interactions (FSI) between the struck nucleon
and the spectator particles. In this Letter, we report the
results of calculations of the inclusive electron-carbon cross
section at 300≲ jqj≲ 800 MeV, carried out taking into
account both the elastic and inelastic channels, two-nucleon
currents, and FSI effect. We emphasize that in our work the
relativistic treatment of the two-nucleon currents is asso-
ciated, for the first time, with a description of the dynamics
that goes beyond the independent particle model of the
nucleus.
In interacting many-body systems, processes involving

one- and two-nucleon currents are inextricably related, as
they both lead to the appearance of two-particle–two-hole
(2p2h) final states. As a consequence, the corresponding
transition amplitudes interfere, and must be treated in a
consistent fashion [5].
Neglecting the contribution of final states involving more

than two nucleons in the continuum, the cross section can
be written as

dσ ∝ LμνWμν ¼ LμνðWμν
1p1h þWμν

2p2hÞ; ð1Þ

where the label npnh refers to n-particle–n-hole final
states and the tensor Lμν is completely determined by
lepton kinematics. The target response tensor Wμν, on the
other hand, is written in terms of matrix elements of the
nuclear current operator between the target ground state
and the hadronic final states.
The current entering the definition of the 2p2h compo-

nent Wμν
2p2h can be cast in the form

Jμðk1;k2Þ ¼ jμ1ðk1Þδðk2Þ þ jμ2ðk2Þδðk1Þ þ jμ12ðk1;k2Þ;
ð2Þ

clearly showing how the total momentum transfer,
q ¼ k1 þ k2, is shared between the two nucleons involved
in the electromagnetic interaction, labeled by the indices 1
and 2.
The Feynman diagrams of Fig. 1, in which h;h0 and

p;p0 label the momenta of the hole and particle states,
respectively, illustrate the different contributions to
jμ12ðk1;k2Þ. In this work we have considered two-body
currents of two types. The one associated with the
exchange of a π meson is required by current conservation.
Hence, its expression is determined—at least in principle—
by the structure of the NN potential.
Figure 1(b), featuring a γππ vertex, is associated with

the “pion-in-flight” term, while the sum of Fig. 1(a),
involving a γπNN vertex, and the one obtained interchang-
ing particles 1 and 2 accounts for the “seagull,” or “contact”
contribution. Figures 1(c) and 1(d), as well as the corre-
sponding two in which particles 1 and 2 are interchanged,
are associated with two-body current terms involving a Δ
resonance in the intermediate state. Owing to the purely
transverse nature of this current, their form is not subject to

current-conservation constraints, and is therefore largely
model dependent [2]. In order to make contact between our
results and those obtained by Dekker et al. [9] and De Pace
et al. [11], we have used the fully relativistic expression of
the two-body currents reported in their papers, with the
same form factors and Δ width.
The factorization ansatz amounts to writing the matrix

elements describing transitions from the ground state to
2p2h final states in terms of nuclear amplitudes and matrix
elements of the one- and two-body current operators
between free-nucleon states. For the one-nucleon current,
one finds [14,16]

h0jjμ1jhh0pp0i ¼
Z

d3kΦhh0p0
k hkjjμ1jpi; ð3Þ

where the state jki describes a free nucleon carrying
momentum k, while the overlap between the target ground
state and the 2h1p state of the residual (A-1)-particle
system, in which one nucleon is excited to the continuum,
is written in the form

Φhh0p0
k ¼ h0jfjki ⊗ jhh0p0ig: ð4Þ

Application of the same scheme to the matrix element of
the two-nucleon current operator leads to the expression [16]

h0jjμ12jhh0pp0i ¼
Z

d3kd3k0Φhh0
kk0 hkk0jjμ12jpp0i; ð5Þ

with the nuclear amplitude, involving 2h bound states of the
(A-2)-nucleon spectator system, given by

(a) (b)

(c) (d)

FIG. 1. Free-space meson exchange current diagrams. The first
two correspond to π-meson exchange: diagram (a) and the one
obtained interchanging particle 1 and 2 represent the contact or
seagull contribution, while diagram (b) is the pion-in-flight term.
Diagrams (c) and (d), and the additional two resulting from the
interchange 1↔2, involve a Δ-resonance excitation.
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Φhh0
kk0 ¼ h0jfjkk0i ⊗ jhh0ig: ð6Þ

Using the above results, the 2p2h contribution to the
nuclear response tensor can be decomposed according to

Wμν
2p2h ¼ Wμν

2p2h;11 þWμν
2p2h;22 þWμν

2p2h;12: ð7Þ

The first term comprises the squared amplitudes involving
only the one-nucleon current. Note that the occurrence of
these matrix elements is a genuine correlation effect, not
accounted for within the independent particle model. As a
consequence, the calculation of Wμν

2p2h;11, describing proc-
esses in which the momentum q is transferred to a single
high-momentum nucleon, requires the continuum compo-
nent of the hole spectral function [17,18].
The second term on the right-hand side of Eq. (7),

involving the matrix elements of the two-nucleon current, is
written in terms of the two-nucleon spectral function [19].
The explicit expressions of Wμν

2p2h;11 and Wμν
2p2h;22 are

reported in Ref. [16].
Finally, Wμν

2p2h;12, taking into account interference con-
tributions, involves the nuclear overlaps defined in both
Eqs. (4) and (6). The resulting expression is

Wμν
2p2h;12 ¼

Z
d3kd3ξd3ξ0d3hd3h0d3pd3p0Φhh0

ξξ0
�

× ½Φhh0p0
k hkjjμ1jpi þ Φhh0p

k hkjjμ2jp0i�
× hpp0jjν12jξ; ξ0iδðhþ h0 þ q − p − p0Þ
× δðωþ eh þ eh0 − ep − ep0 Þθðjpj − kFÞ
× θðjp0j − kFÞ þ H:c: ð8Þ

We have compared the results of our approach to the
measured electron-carbon cross sections in two different
kinematical setups, corresponding to momentum transfer
300≲ jqj≲ 800 MeV. The calculations have been carried
out following Ref. [16], using the carbon spectral function
of Ref. [20] and the 1h contribution to the spectral function
of isospin-symmetric nuclear matter of Ref. [17]. The 2h1p
amplitude, needed to evaluate the interference term, has
also been computed for nuclear matter at equilibrium
density. In the quasielastic channel we have adopted the
parametrization of the nucleon form factors of Ref. [21],
whereas the inelastic nucleon structure functions have been
taken from Refs. [22,23].
Figure 2 shows the electron-carbon cross section at

beam energy Ee ¼ 680 MeV and scattering angle θe ¼
36 deg [Fig. 2(a)] and Ee ¼ 1300 MeV and θe ¼ 37.5 deg
[Fig. 2(b)]. The solid and dashed lines correspond to the
results of the full calculation and to the one-body current
contribution, respectively. The pure two-body current
contribution and the one arising from interference are
illustrated by the dot-dashed and dotted lines. In the
kinematics of Fig. 2(a) the two-body currents play an

almost negligible role. The significant lack of strength in the
Δ-production region, discussed inRef. [26], is likely to bedue
to the inadequacy of the structure functions ofRefs. [22,23] to
describe the region of Q2 ≲ 0.2 GeV2, while the shift in the
position of the quasielastic peak has to be ascribed to the
effects of FSI, which are not taken into account.
At the larger beam energy and Q2 corresponding to

Fig. 2(b), the agreement between theory and data is
significantly improved, and the contribution of the two-
nucleon currents turns out to substantially increase the
cross section in the dip region and beyond.
In inclusive processes, FSI have two effects: a shift of

the cross section, arising from the interaction between the
struck nucleon and the mean field generated by the
spectator particles, and a redistribution of the strength
from the quasielastic peak to the tails. The theoretical
approach for the description of FSI within the spectral
function formalism is discussed in Refs. [12,13,15,27].
According to Refs. [15,27], the differential cross section

can be written in the convolution form

dσFSIðωÞ ¼
Z

dω0fqðω − ω0 −UVÞdσðω0Þ; ð9Þ

(a)

(b)

FIG. 2. (a) Double differential cross section of the process
eþ 12C → e0 þ X at beam energy Ee ¼ 680 MeV and scattering
angle θe ¼ 37.5 deg. The solid line shows the result of the full
calculation, while the dashed line has been obtained including the
one-body current only. The contributions arising from two-
nucleon currents are illustrated by the dot-dashed and dotted
lines, corresponding to the pure two-body current transition
probability and to the interference term, respectively. The
experimental data are taken from Ref. [24]. (b) Same as
(a) but for Ee ¼ 1300 MeV and θe ¼ 37.5 deg. The experimental
data are taken from Ref. [25].
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where dσ denotes the cross section in the absence of FSI,
the effects of which are accounted for by the folding
function

fqðωÞ ¼
ffiffiffiffiffiffi
TA

p
δðωÞ þ ð1 −

ffiffiffiffiffiffi
TA

p
ÞFqðωÞ: ð10Þ

The above equations show that inclusion of FSI involves
three elements: (i) the real part of the optical potential UV
extracted from proton-carbon scattering data [28], respon-
sible for the shift in ω, (ii) the nuclear transparency TA
measured in coincidence ðe; e0pÞ reactions [29], and (iii) a
function FqðωÞ, sharply peaked at ω ¼ 0, whose width is
dictated by the in-mediumNN scattering cross section [27].
A comprehensive analysis of FSI effects on the electron-

carbon cross sections has been recently carried out by the
authors of Ref. [15]. In this work we have followed closely
their approach, using the same input.
Figure 3 illustrates the effects of FSI on the electron-

carbon cross section in the kinematical setups of Fig. 2. In
Fig. 3(a), both the pronounced shift of the quasielastic peak
and the redistribution of the strength are clearly visible, and
significantly improve the agreement between theory and
data. For larger values of Q2, however, FSI play a less
relevant, in fact almost negligible, role. This feature is
illustrated in Fig. 3(b), showing that at beam energy Ee ¼
1.3 GeV and scattering angle θe ¼ 37.5 deg, correspond-
ing toQ2 ∼ 0.5 GeV2, the results of calculations carried out

with and without inclusion of FSI give very similar results,
yielding a good description of the data.
Note that, being transverse in nature, the calculated two-

nucleon current contributions to the cross sections exhibit a
strong angular dependence. At Ee ¼ 1.3 GeV, we find that
the ratio between the integrated strengths in the 1p1h and
2p2h sectors grows from 4% at electron scattering angle
θe ¼ 10 deg to 46% at θe ¼ 60 deg.
The results of our work show that the approach based on

the generalized factorization ansatz and the spectral func-
tion formalism provides a consistent framework for a
unified description of the electron-nucleus cross section,
applicable in the kinematical regime in which relativistic
effects are known to be important.
The extension of our approach to neutrino-nucleus

scattering, which does not involve further conceptual
difficulties, may offer new insight into the interpretation
of the cross section measured by the MiniBooNE
Collaboration in the quasielastic channel [30,31]. The
excess strength in the region of the quasielastic peak is
in fact believed to originate from processes involving
two-nucleon currents [32–34], whose contributions are
observed at lower muon kinetic energy as a result of the
average over the neutrino flux [35]. The strong angular
dependence of the two-nucleon current contribution may
also provide a clue for the understanding of the differences
between the quasielastic cross sections reported by the
MiniBooNE Collaboration and the NOMAD Collaboration
[36], which collected data using neutrino fluxes with
very different mean energies: 880 MeV and 25 GeV,
respectively [35].
As a final remark, it has to be pointed out that a clear-cut

identification of the variety of reaction mechanisms con-
tributing to the neutrino-nucleus cross section will require a
careful analysis of the assumptions underlying different
models of nuclear dynamics. All approaches based on the
independent particle model fail to properly take into
account correlation effects, leading to a significant reduc-
tion of the normalization of the shell-model states [37], as
well as to the appearance of sizable interference terms in
the 2p2h sector. However, in some instances these two
deficiencies may largely compensate one another, leading
to accidental agreement between theory and data. For
example, the two-body current contributions computed
within our approach turn out to be close to those obtained
within the Fermi gas model.
The development of a nuclear model having the pre-

dictive power needed for applications to the analysis of
future experiments—most notably the Deep Underground
Neutrino Experiment (DUNE) [38]—will require that the
degeneracy between different approaches be resolved. A
systematic comparison between the results of theoretical
calculations and the large body of electron scattering data,
including both inclusive and exclusive cross sections, will
greatly help to achieve this goal.

(a)

(b)

FIG. 3. (a) Double differential electron-carbon cross section at
beam energy Ee ¼ 680 MeV and scattering angle θe ¼ 36 deg.
The dashed line corresponds to the result obtained neglecting FSI,
while the solid line has been obtained within the approach of
Ref. [15]. The experimental data are taken from Ref. [24].
(b) Same as (a) but for Ee ¼ 1300 MeV and θe ¼ 37.5 deg.
The experimental data are taken from Ref. [25].
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