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Polymer networks invariably possess topological defects: loops of different orders which have profound
effects on network properties. Here, we demonstrate that all cyclic topologies are a universal function of a
single dimensionless parameter characterizing the conditions for network formation. The theory is in
excellent agreement with both experimental measurements of hydrogel loop fractions and Monte Carlo
simulations without any fitting parameters. We demonstrate the superposition of the dilution effect and
chain-length effect on loop formation. The one-to-one correspondence between the network topology and
primary loop fraction demonstrates that the entire network topology is characterized by measurement of
just primary loops, a single chain topological feature. Different cyclic defects cannot vary independently, in
contrast to the intuition that the densities of all topological species are freely adjustable. Quantifying these
defects facilitates studying the correlations between the topology and properties of polymer networks,
providing a key step in overcoming an outstanding challenge in polymer physics.
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Polymer networks are widely used for applications rang-
ing fromcommoditymaterials [1–4], such as superabsorbers,
selective membranes, and high-impact rubbers, to biomedi-
cal materials, such as drug delivery devices, tissue engineer-
ing scaffolds, and extracellular matrix [5–14]. However,
effectively characterizing the structure of polymer networks
and understanding the correlation between the topology and
properties remains an outstanding challenge. Much of our
fundamental knowledge about polymer networks is based
on homogeneous acyclic treelike structures [1,15–21].
Although the spatial inhomogeneity in polymer networks
can be reduced by end-linking of precursor chains via
f-functional junctions [22] [Fig. 1(a)], all polymer networks
inevitably possess topological defects: loops [Fig. 1(b)]
formed by intrinsic intramolecular reactions. These cyclic
defects weaken the materials depending upon the type of
loop structure formed: primary loops are completely elasti-
cally inactive, while higher-order loops may contribute to
elasticity differently depending upon their specific topology.
Our inability to quantify these aspects of network structure
hinders our ability to quantitatively predict the mechanical
response of polymer networks. For example, a systematic
treatment of loop structure is essential for testing the validity
of the affine and phantom network models in real polymer
networks, a long-standing problem in polymer science [15].
Beyond polymer networks, cyclic defects suppressing the
spread of information also exist in many other networks
[23,24], such as routing loops in computer networks and
acquaintance clusters in social networks. Therefore, under-
standing and controlling cyclic defects is critical to many
forms of network science and engineering.
Theoretical efforts have addressed the delay of the gel

point due to loop formation [25–28]; however, the intrinsic

dependence of the cyclic topology on the condition under
which the polymer network is formed as well as the inherent
relations between different orders of loop structures are
unknown [29,30]. Experimental techniques such as rheol-
ogy or spectroscopy and multiple-quantum NMR can
provide semiquantitative information related to the loop
structure [31–33]. Recently, Zhou et al. reported “network
disassembly spectrometry” (NDS), which is the first exper-
imental method for directly quantifying primary loops
[34,35]. A theory that can fully describe the dilution and
chain-length effects on primary loop fraction observed in
experiments is lacking. Previous theoretical work needs to
use different fitting parameters for the same polymer as
chain length varies [35]. Moreover, recent experimental
results show that the modulus of real networks deviates

FIG. 1. Schematic of end-linked polymer networks. (a) General
end-linking reaction between a bifunctional polymer precursor
(A2) and a trifunctional junction (B3). (b) Schematic of a network
with different orders of cyclic defects. (c) An exhaustive list of
subgraphs considered in the modified rate theory for stoichio-
metric end-linking at full conversion.
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significantly from ideal network models, even though the
primary loop effect has been either eliminated by designing
the precursors [36] or corrected through subtracting the
wasted strands measured by NDS [37]. This discrepancy
demonstrates the pronounced role of higher-order loops not
captured by previous theories. While the effect of primary
loops on network mechanics is well understood, the elastic
effectiveness of polymer strands in higher-order loops is
unknown. Therefore, it is desirable to understand higher-
order topologies within polymer networks, so that the
impacts of different cyclic defects on network properties
can be decoupled and quantified separately.
Here we consider a network prepared via end-linking

bifunctional (A2) polymer precursors and trifunctional (B3)
junctions [Fig. 1(a)]. To describe both the topology of
polymer networks and the kinetics of network formation,
we develop a modified rate theory based on the work of
Stepto and co-workers [38–40], which is a kinetic graph
theory using a set of finite number of subgraphs to represent
the unmanageably large network. The formation and
interconversion of different subgraphs is tracked through
a coupled system of differential equations. Here, subgraphs
are restricted to a critical size of two nodes; cyclic
topologies formed within the critical size are recorded
(see Sec. I of Supplemental Material for the list of all 42
subgraphs considered for the A2 þ B3 system [41]). Each
functional group on the junction may be unreacted, contain
a dangling chain, contain a looped chain, or be connected to
the network through a bridging chain. Beyond the critical
size, junctions are assumed to be uncorrelated, which can
randomly react with each other. For functional groups
belonging to different subgraphs, the rate for forming the
bridge connecting these two subgraphs is given by

Rij;bridge ¼ kAB½Ai�½Bj�; ð1Þ
where kAB is the second-order rate constant and ½Ai� and ½Bj�
are the instantaneous concentrations of A and B functional
groups on species i and j, respectively. Since the initial
polymer concentrations for all experimental data to be
described in this work are beyond the dilute polymer solution
regime, the polymer precursor A2 is modeled as a mono-
dispersed flexible Gaussian chain. In this case, the rate of
forming an intramolecular loop depends upon the probability
of the two ends of annth-order chain encountering eachother,
Pn ¼ ð3=2πnhR2iÞ3=2. hR2i ¼ ðM=mÞb2 is themean-square
end-to-enddistance of polymerswhich can be estimated from
the molar mass of A2 (M), the published values of Kuhn
length (b), and the molar mass of a Kuhn monomer (m).
Hence, for groups belonging to the same subgraph, the rate
of forming the intramolecular loop is given by

Ri;loop ¼ kAB
Nn

A;i

NAv

�
3

2πnhR2i
�

3=2
½Bi�; ð2Þ

where Nn
A;i is the number of functional group A contained in

subgraph i which can form the nth-order loop, and NAv is
Avogadro’s number. This theory can be easily generalized to
polymer precursors with other chain statistics, such as

semiflexible polymers [43], by reevaluating the probability
density for closing the loop in the corresponding
chain statistics [44], and to polymer network systems with
different junction functionalities or disperse chain lengths.
Furthermore, the theory can also be applied to study the
formation and the structure of cyclic defects in other types
of networks [23,24].
Compared to previous work that focused only on a single

junction, this work expands the set of subgraphs to all
possible configurations containing two junctions [see
Fig. 1(c) for subgraphs present in stoichiometric end-linking
at full conversion]. Increasing the critical size of subgraphs
enables a more accurate description of local correlations
between junctions and allows simultaneous quantification of
both primary and higher-order loops.
Comparison between the two junction rate theory and

experimental measurements of loops in polymer networks
shows quantitative agreement between theory and experi-
ment with no variable parameters. Loop fractions fn (the
fraction of all junctions contained in one nth-order loop)
predicted by the two junction theory are compared to the
published NDS experimental data [35] for poly(ethylene
glycol) (PEG) networks and the Monte Carlo (MC)
simulations (see Sec. II of Supplemental Material for a
description of the MC algorithm [41]). The order of a loop
is defined as the number of chains required to close the loop
[Fig. 1(c)]. Figure 2 plots loop fractions fn versus the initial
polymer molar concentration (c) concentration for PEG
precursors with three different chain lengths [45]. As
shown in Fig. 2(a), the primary loop fraction predicted
by our theory is in excellent agreement with both the
experimental data and MC simulations. Using intrinsic
parameters of PEG reported in the literature [15] (Kuhn
length b ¼ 1.1 nm and molar mass of Kuhn monomer
m ¼ 137 g=mol), the two junction theory can quantita-
tively describe both the dilution and chain-length effects on
the primary loop fraction; this is superior to previous work
that used the Kuhn segment length as a fitting parameter,
resulting in discrepancies as chain length was varied [35].
The two junction theory is also able to predict the

secondary loop fraction f2 [Fig. 2(b)], which cannot yet
be quantified experimentally. Unlike themonotonic decay of
f1, the concentration dependence of f2 presents a maximum
with the same peak value for different PEG precursors. The
secondary loop fraction predicted by the theory is in good
agreement with the MC simulations (especially for longer
PEG) in the entire concentration region except the neighbor-
hood of the maximum, because intramolecular correlations
beyond two junctions, which are accounted for in the MC
simulation, are assumed to be absent in the theory.
A dimensional analysis shows that cyclic defects depend

on a single universal parameter characterizing the forma-
tion condition of networks. For stoichiometric end-linking
at full conversion, as the cases studied in Fig. 2, the
dimensionless loop fractions fn must be uniquely deter-
mined by the dimensionless variable chR2i3=2 ¼
cb3ðM=mÞ3=2 that diminishes the volume unit. This
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variable characterizes the ratio between the intramolecular
distance (edge connecting junctions within the same graph)
and the intermolecular distance (edge between junctions in
different graphs). When plotted against this dimensionless
variable, fn for different chain lengths in Fig. 2 collapse
into master curves, as shown in Fig. 3(a), suggesting a
superposition of the dilution effect and the chain-length
effect, with the principle given by

fnðM2; c2Þ ¼ fnðM1; αMc1Þ; ð3Þ

where αM ¼ ðM1=M2Þ3=2 is the shift factor for changing
molar mass from M1 to M2. The experimental data for
polymer precursors of different chain lengths span different
regions along the master curve, joining together to form the
entire “loop spectrum.” The different scaling of c and M
indicates that chain length is more effective in controlling
loop fraction than concentration. The NDS experimental
data shown in Fig. 2 are restricted to PEG networks;
however, the master curves presented in Fig. 3(a) are
universal for networks end-linked by all types of flexible
polymers, given the corresponding Kuhn length and molar
mass of Kuhn monomer. Therefore, this theory can be
applied to a broad range of networks where the NDS
technique is currently not applicable. While the exact form
of the master curves depends on the functionality of
junctions, the superposition principle for the dilution effect
and chain-length effect revealed here is expected to dem-
onstrate a universal property for all junction functionalities.
Besides the overall loop fraction, this theory also

captures the short-range correlations between loops and
ideal junctions, which provide insight on the spatial
distribution of cyclic defects in networks. Based on the
correlation between two primary loops, the entire loop
spectrum can be divided into three regions [Fig. 3(b)]. In
region 1, ftree=fdumbbell < 10−3 [or cb3ðM=mÞ3=2 < ∼0.1];
the tree structure that separates different loops is absent and
primary loops are fully correlated (see Sec. III of
Supplemental Material for the topological structure
[41]): the network is sol. In region 3, ftree=fdumbbell >
103 [or cb3ðM=mÞ3=2 > ∼10]; primary loops are rare,
dumbbell primary loops (short-range correlations) disap-
pear, and the tree structure dominates. The network
(probably an elastomer or gel) is locally disturbed by loops
without losing its long-range connectivity. Each primary
loop is isolated, and the loop or bridge state of each chain is
independent. Therefore, the gel can be envisioned as an
“ideal loop gas.” The impact of each loop on the network
properties is linearly additive. Region 2 (103 > ftree=
fdumbbell > 10−3) is most accessible in experiment and
meanwhile most complicated due to the coexistence of
all species. Because of the saturation of junction function-
ality, the formation of different topologies is not

(a)

(b)

FIG. 2. (a) Primary loop fraction f1 and (b) secondary loop
fraction f2 versus initial polymer molar concentration c calcu-
lated by the modified rate theory in comparison with the
experimental data and MC simulation. In both the theory and
simulation, the Kuhn length and molar mass of Kuhn monomer of
PEG are chosen as b ¼ 1.1 nm and m ¼ 137g=mol [15].

(a) (b) (c) (d)

FIG. 3. Universal cyclic topology of polymer networks. (a) Master curves of primary and secondary loop fractions on the single
dimensionless variable cb3ðM=mÞ3=2 characterizing the network formation condition. (b) Plot of calculated fractions of different
topological structures versus cb3ðM=mÞ3=2 in the logarithm scale to illustrate three regions in the loop spectrum. (c) Linear relation
between 1=f1 and cb3ðM=mÞ3=2. (d) Loop diagram by plotting f2 and f3 versus f1.

PRL 116, 188302 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
6 MAY 2016

188302-3



unconstrained but competitive, which is reflected by the
nonmonotonic change in the fraction of single primary
loops. Different cyclic defects weaken the network co-
operatively in this region: the strands connecting two
adjacent loops cannot be perceived as completely elasti-
cally active. Network properties depend on both the
number of loops as well as their spatial arrangement.
Despite the presence of correlation between loops and

ideal junctions in region 2, it is surprising that 1=f1 versus
cb3ðM=mÞ3=2 exhibits a linear relation [Fig. 3(c)], which
leads to an analytical expression similar to the Langmuir
adsorption isotherm as

f1 ¼
1

1þ kcb3ðM=mÞ3=2 ; ð4Þ

with the coefficient k (slope of the line) depending
on junction functionality. f ≈ ½cb3ðM=mÞ3=2�−1 as
cb3ðM=mÞ3=2 ≫ 1. This slow decay implies that achieving
loop fractions close to zero is extremely difficult. The fact
that primary loop fraction follows this mean-field-type
description suggests some renormalization treatment of
loops to remove the correlation.
Because the number of primary loops is a one-to-one

function of cb3ðM=mÞ3=2 and because all topologies
depend solely on cb3ðM=mÞ3=2, knowledge of the primary
loop fraction is sufficient to determine the number of all
higher-order topological structures in the network. This is
illustrated as the “loop diagram” in Fig. 3(d). For very small
f1, where different loops are uncorrelated, f2 and f3
increase linearly, with the slope fn=f1 ¼ nn−3=2 in agree-
ment with the intrinsic probability of closing Gaussian
chains. With f1 increasing, fractions of higher-order loops
deviate downward from linearity, reaching a maximum and
dropping to 0 as f1 approaches 1. This strong nonmono-
tonic behavior indicates the competition in forming differ-
ent loops due to the saturation of junction functionality. In
particular, the existence of primary loops excludes the
formation of higher-order loops. The maximum of f3
appears at lower value of f1 compared to the maximum
of f2, which indicates that the formation of the higher-order
loop is more sensitive to the connectivity of its neighbor
environment in the network. Furthermore, the fraction of
higher-order loops is comparable to f1, e.g., f2 þ f3 ¼
0.18 as f1 ¼ 0.2; therefore, higher-order structures cannot
be ignored. This explains why the network modulus
observed in experiments cannot be described by only
correcting for the primary loop effect [36,37].
Intuitively, one can envision many combinations of

different topological defects (primary loops, secondary
loops, etc.) that result in identical mechanical properties
but varying primary loop fractions. However, results shown
in Fig. 3(d) demonstrate that the relative populations of
different topological defects are not freely adjustable;
fractions of all higher-order loops are uniquely determined
once f1 is fixed. Statistically, there is one-to-one corre-
spondence between network topology and primary loop

fraction, universal for all flexible polymers. In other words,
polymer networks can be uniquely categorized using the
primary loop fraction, providing a more universal exper-
imental observable to determine network topology than the
variety of preparation conditions used in most previous
studies. This categorization also facilitates directly map-
ping the cyclic defects in polymer network topology to the
mechanical properties. Our results imply that any networks
will have the same dimensionless modulus (G=νkT, where
ν is the total density of polymer strands in the network) if
they belong to the same loop category (same f1). For the
same monomer functionality (A2 þ B3 in this work) and
process for network synthesis, G=νkT is uniquely deter-
mined once f1 is fixed.
The two junction rate theory also facilitates the study of

the loop formation kinetics during network formation. As
shown in Fig. 4, the evolution of the primary loop fraction
predicted by our theory is in excellent agreement with the
NDS experimental data. Primary loops and secondary
loops, generated from isolated intramolecular connection,
are accumulated smoothly as conversion increases. On the
contrary, the fraction of tree structures, related to the
cooperative intermolecular connection, presents a sharp
increase at higher conversion due to preferential formation
of bridges. This can also be illustrated by the inset showing
ftree=fdumbbell and ftree=fsingle loop.) This sharp increase
occurs at a conversion slightly larger than 0.7, the gel
point of loop-free networks [1], which implies a global
change of the network topology.
These results show the universal cyclic topology of

polymer networks and its intrinsic dependence on the
formation condition by studying flexible polymers end-
linked via trifunctional junctions. Both the theory and
conclusions can be generalized to more complicated
polymer network systems with polydisperse chain length
as well as other junction functionalities and chain statistics

FIG. 4. Kinetics of loop formation. Fractions of primary loop,
secondary loop, and tree structure versus conversion of functional
groups in comparison with the NDS experimental data for PEG28
at c ¼ 40 mM. The inset shows the ratios between the fractions
of tree structure and dumbbell structure as well as the single
primary loop structure, respectively.
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(e.g., semiflexible polymers). The universal cyclic topology
found in polymer networks is also anticipated to provide
inspiration in the study of other types of networks, such as
computer, biological, and social networks. The theory
shows excellent agreement with the NDS experimental
data without any fitting parameters, and can be applied to a
broad range of networks where the NDS technique is
currently not applicable. Quantifying different cyclic
defects separately in this work enables decoupling their
impacts, which is essential for developing correlations
between topology and mechanical properties, an outstand-
ing challenge in polymer science. Unifying the dilution and
chain-length effects for network formation greatly reduces
the parameter space experimentally available to tune net-
work properties, providing a key step towards predictably
designing the material properties by introducing the right
amount of loops within polymer networks [46]. The
universal relation between different cyclic defects indicates
that different loop fractions cannot vary independently, in
stark contrast to the intuition that arbitrary combinations of
different loops can be synthesized. Once the primary loop
fraction is known (which is now measurable in experi-
ments), the polymer network topology is fully defined.
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