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We study the effect of a nonmagnetic impurity inserted in a two-dimensional frustrated ferromagnet
above its saturation magnetic fieldHsat for arbitrary spin S. We demonstrate that the ground state includes a
magnetic vortex that is nucleated around the impurity over a finite range of magnetic fieldHsat ≤ H ≤ HI

sat.
Upon approaching the quantum critical point atH ¼ Hsat, the radius of the magnetic vortex diverges as the
magnetic correlation length: ξ ∝ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H −Hsat

p
. These results are derived both for the lattice and in the

continuum limit.
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Introduction.—It is known that magnets with competing
interactions can supportmetastable Skyrmion solutions [1].
Magnetic Skyrmions are particlelike spin textures of
topological origin, which can be found in noncentrosym-
metric (chiral) magnets with competing ferromagnetic
(FM) exchange and Dzyaloshinskii-Moriya interaction
[2,3], or in frustrated (nonchiral) magnets with competing
exchange interactions [4,5]. In the light of these results, it is
natural to ask if similar topological structures can be
rendered thermodynamically stable by introducing impu-
rities. This question can be addressed by considering the
case of frustrated magnets near a Lifshitz transition
between incommensurate spiral ordering (ordering wave
vectorQ ≠ 0) andQ ¼ 0 FM ordering. As we demonstrate
in this Letter, a simple nonmagnetic impurity is enough to
nucleate a magnetic vortex above the saturation field Hsat
required to fully polarize the spins of the clean system. The
vortex state emerges below the local saturation field around
the impurity, HI

sat > Hsat, and its radius is equal to the
magnetic correlation length ξ, which diverges as ξ ∝
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H −Hsat

p
upon approaching the quantum critical point

(QCP) at H ¼ Hsat. The mean-field exponent ν ¼ 1=2 is
characteristic of QCP’s in the Bose-Einstein universality
class, where the driving parameter (H) couples to a
conserved quantity [6].
We present a general theory based on a semiclassical

analysis of the continuum theory, which is complemented
by an exact solution of the problem on a lattice. We start by
considering a spin S triangular lattice (TL) Heisenberg
model with FM nearest-neighbor (NN) exchange, J1 < 0,
and AFM third NN exchange J3:

H ¼ J1
X
hj;li

Sj · Sl þ J3
X
hhj;lii

Sj · Sl −H
X
j

Szj: ð1Þ

The relative position vectors of the NNs in the TL are �eν,
with e1¼x̂, e2¼−x̂=2þ ffiffiffi

3
p

ŷ=2, and e3¼−x̂=2−
ffiffiffi
3

p
ŷ=2.

The main role of J1 and J3 is to produce a momentum space
interaction, JðqÞ ¼ P

j¼1;3ðJ1 cosq · ej þ J3 cos 2q · ejÞ,
with global minima at finite wave vectors �Qν of magnitude
Q ¼ jQνj ¼ 2 arccos ½1

4
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð2J1=J3Þ
p Þ�, which are

connected by the C6 symmetry group of the TL. The
system is a ferromagnet for J3 < −J1=4. The onset of a finite
ordering wave vector above J3 ¼ −J1=4 signals a Lifshitz
transition from FM to incommensurate AFM ordering.
Correspondingly, Hsat also becomes finite for J3 > −J1=4:
Hsat ¼ −SJðQνÞ þ 3SðJ3 þ J1Þ. Right above J3 ¼ −J1=4,
we can expand in the small parameter δ ¼ 3ðJ1 þ 4J3Þ=
ð2J3Þ:

Hsat ≃ 6Sδ2J23=ðJ1 þ 32J3Þ and Q≃ 2

3

ffiffiffi
δ

p
; ð2Þ

which implies that Hsat ∝ Q4 near the Lifshitz point.
We assume that δ > 0 and H > Hsat. We want to know

the effect of replacing a spin by a nonmagnetic impurity. It
has been shown recently that nonmagnetic impurities lead
to noncoplanar spin structures in the TL Heisenberg model
with only NN AFM interaction [7–10]. In contrast, here we
consider the effect of nonmagnetic impurities on frustrated
magnets with competing FM and AFM interactions. Given
the FM nature of J1, HI

sat turns out to be higher than Hsat,
implying that the spins should cant away from the z axis
around the nonmagnetic impurity for Hsat ≤ H < HI

sat. The
spin texture far away from the nonmagnetic impurity can be
obtained by taking the continuum limitQ ≪ 1. In this limit,
H can be reexpressed as

R
dr2½HisoðrÞ þHaniðrÞ�, with the

Hamiltonian densities

Hiso¼−
δ

2
J3ð∇SÞ2þ 3

64
ðJ1þ16J3Þð∇2SÞ2−H ·S;

Hani¼A½11ð∂3
xSÞ2þ15ð∂2

x∂ySÞ2þ45ð∂x∂2
ySÞ2þ9ð∂3

ySÞ2�;
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up to sixth order in a gradient expansion and A ¼
ðJ1 þ 64J3Þ=7680. Given that the leading-order amplitude
of the C6 anisotropy is Q6, we can neglect Hani for Q ≪ 1.
We will rescale our energy, length, and magnetic field units
in order to normalize the Hamiltonian coefficients [5]:

Hiso ¼
Z �

−
δ

2
ð∇SÞ2 þ 1

2
ð∇2SÞ2 −H · S

�
dr2: ð3Þ

In the new units, we have Hsat ¼ Sδ2=4 and Q ¼ ffiffiffi
δ

p
=

ffiffiffi
2

p
.

Equation (3) is the universal theory for centrosymmetric
frustrated magnets near a Lifshitz point.
The nonmagnetic impurity can be modeled by modifying

the stiffness −δ: δ is enhanced near the origin because of
the suppression of J1 on the bonds connecting the non-
magnetic impurity and its NNs. To allow for an analytical
solution, we consider a steplike modulation of the stiffness:

~δðrÞ ¼ δ½1þ Δ0Θðr0 − rÞ�; ð4Þ

where ΘðxÞ is the Heaviside step function, r0 is the range
over which the local stiffness is modified by the presence
of the impurity, and Δ0 is a positive dimensionless
parameter. The choice of the step function is arbitrary
because details of this nonuniversal function do not affect
the asymptotic behavior of the solution for r ≫ r0.
HI

sat corresponds to the magnetic field value at which the
lowest energy mode of the fully polarized (FP) state
becomes gapless. The nature of the instability below H ¼
HI

sat is determined from the structure of the lowest energy
mode. We obtain this mode from a semiclassical expansion
of Hiso, which turns out to be exact for arbitrary spin S. To
describe the small oscillations around the ground-state
configuration, we introduce the bosonic field φðrÞ via
the Holstein-Primakoff transformation: Sþr ¼ Sxr þ iSyr ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S − φ†ðrÞφðrÞ

p
φðrÞ and Szr ¼ S − φ†ðrÞφðrÞ. By

expanding Hiso
J1−J3 up to quadratic order in φðrÞ, we obtain

the spin-wave Hamiltonian density:

Hsw
J1−J3 ¼ Hφ†φ − ~δðrÞS∇φ†∇φþ S∇2φ†∇2φ: ð5Þ

The resulting equation of motion for φðrÞ is

−i∂tφ ¼ Hφ − ~δðrÞS∇2φþ S∇4φ: ð6Þ

In the absence of the impurity, the eigenmodes are
magnons with a dispersion relation,

ωk ¼ −δSk2 þ Sk4 þH ¼ S

�
k2 −

δ

2

�
2

þH −
Sδ2

4
: ð7Þ

This expression shows explicitly thatHsat ¼ Sδ2=4; i.e., the
magnon gap is Δs ¼ H − Sδ2=4. H enters as an additive
constant that shifts the whole spectrum because it couples
to the conserved quantity SzT ¼ R

Szrdr2.

In the presence of the impurity, the spatially uniform
stiffness −δ must be replaced by the nonuniform stiffness,
−~δ, of Eq. (4). The eigenmodes ψ†j0i are now created by
operators of the form ψ† ¼ R

ψ�ðrÞφ†ðrÞdr2, where ψðrÞ
is an eigenfunction of the operator H − S~δðrÞ∇2 þ S∇4.
Given that rotational symmetry around the origin is still
preserved, it is convenient to introduce polar coordinates
r ¼ rðcosϕ; sinϕÞ and work in the basis of eigenstates of
Hsw

J1−J3 with well-defined angular momentum l. These
propagating circular waves are described by the function
JlðkrÞeilϕ, where JlðkrÞ is the lth Bessel function of the
first kind:

∇2½JlðkrÞeilϕ� ¼ −k2JlðkrÞeilϕ: ð8Þ

For r ≤ r0, the stiffness is constant and equal to
−δð1þ Δ0Þ, implying that the eigenmodes in this region
are linear combinations of two circular waves,

ψðr ≤ r0Þ ¼ A1JlðqþrÞeilϕ þ B1Jlðq−rÞeilϕ; ð9Þ

with q�¼ðδð1þΔ0Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2−4H=S−4ω=Sþ2δ2Δ0þδ2Δ2

0

p
=ffiffiffi

2
p Þ. The bound states must decay exponentially for
r → ∞. Therefore, for r > r0 we need to use the modified
Bessel functions of the second kind, which satisfy

∇2½KlðkrÞeilϕ� ¼ k2KlðkrÞeilϕ: ð10Þ

Once again, the eigenfunction for r > r0 is a linear
combination of two functions

ψðr ≥ r0Þ ¼ A2KlðkþrÞeilϕ þ B2Klðk−rÞeilϕ; ð11Þ

with momenta k� ¼ ð−δ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4H=S − 4ω=S

p
=

ffiffiffi
2

p Þ,
which produce an exponential decay for r → ∞. We note
that δ2 − 4H=S − 4ω=S > 0 because bound states must lie
below the magnon gap Δs ¼ H − Sδ2=4. The last part of
the calculation is to impose continuity at r ¼ r0 of the
eigenmodes and their derivatives up to third order. This
condition arises from the fourth-order nature of the differ-
ential equation (6).
The problem is analogous to the 2D quantummechanical

problem of a single particle with an effective mass that
depends on the distance to the origin. The only important
difference is that the manifold of kinetic energy minima is a
ring of radius k ¼ Q instead of a point at the origin [see
Eq. (7)], implying that the density of single-magnon states,
ρðωÞ, has the same Van Hove singularity as a one-
dimensional (1D) system when ω approaches the
bottom of the single-magnon dispersion ω ¼ Δs: ρðωÞ ∝
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω − Δs

p
for ω → Δs. This behavior leads to the

formation of a bound state for an infinitesimal attractive
potential well. As shown in Figs. 1(a) and 1(b), the
1D-like divergence in ρðωÞ produces a binding energy,
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Δb ¼ ωb − Δs ∝ −Δ2
0, in contrast to the milder essential

singularity of the usual two-dimensional (2D) problem with
a single minimum.
The effective attraction produced by an increase in jδðrÞj

for r < r0 acts on all the circular waves with different
angular momenta l. Given that the singularity in ρðωÞ
does not depend on l, a bound state must appear in
each l channel. A lowest energy bound state with finite l
implies that a vortex solution with winding number l
should emerge right below HI

sat. For weak attraction,
Δ0 ≪ 1, the amplitude of the attractive interaction in each
channel is

glðr0Þ ¼ Q3SΔ0

Z
r0

0

J2l ðQrÞdr: ð12Þ

Given the asymptotic form of the Bessel functions for a
small argument, JlðzÞ≃ ðz=2Þl=Γðlþ 1Þ for 0≪ z≪ffiffiffiffiffiffiffiffiffi
lþ1

p
, gl is maximized for l ¼ 0 if r0 ≪ 1. However,

as shown in Fig. 1(b), this is not necessarily true
for r0Q≳ 1. In particular, gl acquires its maximum value
for l ¼ �1 when r0Q becomes of the order or bigger than
the first root of J1ðzÞ. Moreover, a generalized impurity that
increases jδðrÞj in the ring R − r0=2 < r < Rþ r0=2 will
maximize gl for jlj values, which increase monotonically
with R. This type of impurity corresponds to removing
spins from a ring of sites, instead of the single site ðR ¼
r0=2Þ that we are currently considering.
Figures 1(c) and (d) show the binding energies of the

bound states in the l ¼ 0, 1, 2 channels as a function of Δ0

for r0 ¼ 4 and for r0 ¼ 2. Interestingly enough, the l ¼ �1
bound state becomes the ground state above a critical value
of the impurity potential Δ0 for r0 ¼ 2, while it is already
the ground state for arbitrarily small values of Δ0 if r0 ¼ 4.

According to this result, the leading instability around an
impurity in a frustrated magnet can be a magnetic vortex
with winding number l ¼ �1. Moreover, strong impurity
potentials can produce lowest energy bound states with
even higher l values.
Our semiclassical analysis of the continuum theory

implies that the FP state is unstable towards a new ground
state in which the spins near the nonmagnetic impurity are
canted away from the field axis. The spin component
perpendicular to the field axis must exhibit a finite winding
number l (vortex state) under quite general conditions.
Finding the actual distortion below HI

sat for arbitrary spin S
requires solving a complex many-body problem. However,
this problem can be solved in the classical limit by
minimizing the Hamiltonian energy functional given in
Eq. (1). This is done by numerically solving the Landau-
Lifshitz-Gilbert equation of motion, ∂tS ¼ −S ×Heff þ
αS × ∂tS, where α is the Gilbert damping parameter and
Heff ≡ −δH=δS is the effective magnetic field acting on
each spin. The nonmagnetic impurity is introduced by
setting the spin at the origin to 0: Sr¼0 ¼ 0. Consistently
with our previous analysis, a vortex is nucleated around the
impurity once the system is allowed to relax from an initial
FP state. The result is independent of the value of α. As
shown in Figs. 2(a)–2(c), the linear vortex size increases
upon approaching H ¼ Hsat. Indeed, by solving the Euler-
Lagrange equations of the continuum model of Eq. (3) for
Hsat < H < HI

sat, one can verify that the vortex amplitude
(tilting of the spins away from the z axis) decays exponen-
tially over the magnetic correlation length ξ, which
diverges as ξ ∝ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H −Hsat

p
upon approaching the bulk

saturation fieldHsat [11]. The vortex radius then diverges at
the critical point H ¼ Hsat, meaning that the exponential
decay is replaced by an algebraic decay 1=

ffiffiffi
r

p
[11], which

signals a second-order transition into a conical single-Q
magnetic ordering. Finally, Fig. 2(d) shows a giant vortex
solution (l ¼ �2) obtained by removing the spins from the
ring of six sites indicated with black dots. As can be
anticipated from Eq. (12), such a ring favors values of l
which maximize JlðzÞ in the region R − r0=2 < z < Rþ
r0=2.
Lattice.—The continuum theory is only valid in the long

wavelength limit. A similar calculation valid for any
wavelength can be done on the lattice for arbitrary spin
S. The modes for H > HI

sat are obtained by exact diago-
nalization of H in the SzT ¼ NS − 1 sector, i.e., in the
subspace of states with a single-spin flip (S → S − 1)
relative to the FP ground state. The flipped spin can be
regarded as a single particle moving in the central potential
generated by the impurity at the origin. If the impurity
consists of a smaller magnetic moment S0, the flipped spin
has a lower energy, ϵ1 ¼ J1ðS − S0Þ (J1 < 0), when sitting
on the first hexagon of NN sites around the impurity
(potential well) and a higher energy ϵ3 ¼ J3ðS − S0Þ
(potential barrier) when sitting on the six third-NNs. The
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FIG. 1. Binding energies Δl
b for l ¼ 0, 1, 2 as a function of Δ0

for (a) r0 ¼ 4 and (b) r0 ¼ 2. Panels (c) and (d) show the
difference between the energies of the l ¼ 1, 2 and the l ¼ 0
bound states for r0 ¼ 4 and r0 ¼ 2, respectively.
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hopping amplitude between a pair of sites j and l away
from the origin is JjlS, while the hopping between the

impurity and a different site l is J0l
ffiffiffiffiffiffiffi
SS0

p
. It is then clear that

the total spin S is an overall scaling factor for the effective
single-particle Hamiltonian. In other words, the normal
modes depend only on the ratio α ¼ S0=S, implying that for
the case of a nonmagnetic impurity (S0 ¼ 0), the normal
modes are exactly the same all the way from S ¼ 1=2 to the
classical limit S → ∞.
The ground state of the single spin flip for H plus a

nonmagnetic impurity at the origin (S0 ¼ 0) is doubly
degenerate with quasiangular momenta l ¼ �1 and binding
energy Δb (see Fig. 3). This ground space is the precursor
of the vortex state that appears around the impurity right
below the field H ¼ HI

sat, at which the energy of the
l ¼ �1 bound state becomes equal to the energy of the FP
state: HI

sat ¼ Hsat − Δb. Here, jΔbj reaches its maximum

value near J3=J1 ≃ −0.6 and decreases upon approaching
the other incommensurate-commensurate transition
(J3=J1 → ∞), as expected from the potential-well disap-
pearance (ϵ1 → 0) for J1 → 0 [12]. The inset of Fig. 3
shows that the window of magnetic-field values where the
nonmagnetic impurity is expected to bind a vortex is a
sizable fraction of Hsat for J3 ≲ J1.
While we have used a particular Hamiltonian H

for describing the creation of magnetic vortices by
nonmagnetic impurities above Hsat, our conclusion is
valid for a larger family of frustrated Hamiltonians exhibit-
ing Lifshitz transitions. The FM interaction, represented by
J1 in our model, is necessary to have HI

sat > Hsat, i.e.,
to have a bound state around the impurity. We note,
however, that other types of impurities, such as a strain-
induced local enhancement of the exchange interactions,
can also produce a local saturation field HI

sat > Hsat in
frustrated magnets with spiral ordering induced by two
or more competing AFM interactions, such as Ba3Mn2O
[13–17]. Moreover, the underlying lattice does not need to
be C6 invariant. Our continuum theory analysis indicates
that vortex states should also appear in tetragonal
systems. This is confirmed by an explicit calculation for
nonmagnetic impurity inserted on a J1 − J3 square lattice
model [11].
NiGa2S4 is a possible realization of H with −J1=J3 ¼

0.2ð1Þ [18]. Unfortunately, this small ratio produces an
extremely narrow field window above Hsat for observing
the vortex-impurity bound state. NiBr2 provides an
alternative realization of H with −J3=J1 ¼ 0.26 [19].
Nonmagnetic impurities can be introduced by replacing
Ni with Zn [20]. We predict that ZnxNi1−xBr2
should exhibit magnetic vortices bounded to the Zn
impurities right above Hsat. CeRhAl4Si2 and CeIrAl4Si
are alternative examples of tetragonal frustrated magnets
with competing FM and AFM interactions, which exhibit
incommensurate intralayer magnetic ordering at zero
field and low enough temperature [21,22]. Nonmagnetic
impurities should also nucleate magnetic vortices above
the saturation field of these materials.

FIG. 2. Vortex solutions for Hsat < H < HI
sat obtained from numerical simulations of H in the classical limit (S → ∞). (a) Vortex

bound to a single-site nonmagnetic impurity for different field values. The vortex helicity is arbitrary due to the U(1) symmetry of H.
(b) Giant vortex solution (l ¼ �2) obtained after removing the spins from the six sites indicated with black dots, for J3 ¼ −0.2777J1
and Q ¼ 2π=12. The saturation field is Hsat ¼ 0.02235jJ1j and HI

sat ¼ 0.04725jJ1j.
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FIG. 3. Binding energy Δb of the l ¼ �1 bound state around a
nonmagnetic impurity inserted in the TL model described by H.
Here, jΔbj is equal to the difference between the saturation field
around the impurity, HI

sat, and the bulk saturation field Hsat. The
lower inset shows the ratio ðHI

sat −HsatÞ=Hsat as a function of
J3=jJ1j. The contour plots correspond to the amplitude of the
ground state wave function for selected values of J3=jJ1j.
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Finally, the NN FM exchange also leads to the formation
of two-magnon bound states above Hsat [23–25], implying
that the bulk saturation field is, in general, higher than the
value associated with a single-magnon condensation [see
Eq. (2)]. The attractive magnon-magnon interaction can
produce a continuous transition into some form of multi-
polar ordering (e.g., nematic ordering for the condensation
of magnon pairs) [26–31] or a discontinuous transition. In
any case, the magnon-magnon interaction is of order one,
while the attractive interaction between the magnon and a
nonmagnetic impurity is proportional to S, implying that
HI

sat remains higher than Hsat for large enough S. Another
factor that makes the magnon-impurity binding energy
larger than the magnon-magnon binding energy is the static
nature of the impurity: the reduced mass for the two-
magnon problem is half of the single magnon mass relevant
for the magnon-impurity problem.
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