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We realize nanometer size constrictions in ballistic graphene nanoribbons grown on sidewalls of SiC
mesa structures. The high quality of our devices allows the observation of a number of electronic quantum
interference phenomena. The transmissions of Fabry-Perot-like resonances are probed by in situ transport
measurements at various temperatures. The energies of the resonances are determined by the size of
the constrictions, which can be controlled precisely using STM lithography. The temperature and size
dependence of the measured conductances are in quantitative agreement with tight-binding calculations.
The fact that these interference effects are visible even at room temperature makes the reported devices
attractive as building blocks for future carbon based electronics.
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Graphene nanoribbons (GNRs) are an ideal system to
study electronic transport phenomena in the coherent regime
due to the extremely long mean free path and coherence
length of charge carriers [1–3]. In analogy with subwave-
length optics, the coherent transmission of electrons through
narrow constrictions within such ballistic ribbons gives
rise to interference phenomena [4,5]. Graphene nanocon-
strictions (GNCs) are an important building block in carbon
electronics, especially for valleytronic applications [6],
and hence their atomically precise synthesis as well as
electronic characterization is of great importance [7–10].
Unfortunately, lithographically defined GNCs and GNRs
exhibit rather rough edges and the inherent defect potentials
limit drastically the achievable mean free paths [11,12].
The growth of graphene on the sidewalls of SiC mesa

structures was reported to produce graphene nanostructures
of exceptionally high quality [3,13–19]. Their hallmark
feature is the ballistic transport of electrons, which can be
observed on micrometer length scales [3,13]. The robust-
ness of the ballistic behavior makes these devices a prime
platform for studying interference phenomena at graphene
interfaces. For the patterning of narrow constrictions into
the sidewall ribbon, STM lithography is the method of
choice. It was shown to cut graphene sheets with atomic
precision while preserving the quality of the pristine
material away from the cut [20,21].
For the growth of GNRs we use SiC wafers commer-

cially purchased from SiCrystal AG. SiC substrates were
flattened by using the face-to-face heating method [13,22]
and subsequently mesa structures with lateral dimensions
between 1 and 8 μm and a height of 20 nm were defined by
using standard UV lithography combined with reactive
ion etching (gas mixture 20=7 SF6=O2, power 30 W).

GNRs were grown exclusively on the sidewall of the mesa
following standard recipes [13,16].
A four-tip STM in combination with a high-resolution

SEM is used for both transport experiments and in situ
patterning of the nanoribbons. The local characterization of
graphene and ballistic sidewall graphene nanoribbons with
multiple STM probes is nondestructive and highly con-
trolled [3,13,23] and offers a unique possibility to study
directional transport effects in graphene nanostructures
[24]. Further details about the experiments as well as the
theoretical modeling are explained in the Supplemental
Material [25].
The most intriguing feature of the ballistic sidewall

ribbons is a probe-spacing and temperature independent
conductance of 1e2=h [3], which indicates single-channel
transport. In such a ballistic ribbon, abrupt graphene
interfaces can be introduced in the form of a narrow, a
few nanometers wide and long, constriction. For this
purpose, a STM tip is navigated across the graphene
covered sidewall under extreme tunneling conditions,
i.e., at large bias voltages and tunneling currents of about
Vt < −5 V and It ≥ 50 nA. The graphene underneath the
STM tip is thereby removed (cf. Ref. [25], Fig. 1). The
underlying etching mechanism is not fully understood, but
relies most likely on the local breaking of carbon-carbon
bonds underneath the STM tip via field-emitted electrons
[37,38]. The tip was always moved transversely over the
ribbon starting at the trench and ending on the plateau of
the mesa structure as shown schematically in Fig. 1. This
results in the formation of a constriction at the lower edge
of the ribbon as verified by a subsequent STM characteri-
zation. For etching away the graphene at the lower ribbon
edge, much higher etching voltages are needed. This is

PRL 116, 186602 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
6 MAY 2016

0031-9007=16=116(18)=186602(5) 186602-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.116.186602
http://dx.doi.org/10.1103/PhysRevLett.116.186602
http://dx.doi.org/10.1103/PhysRevLett.116.186602
http://dx.doi.org/10.1103/PhysRevLett.116.186602


most likely due to the different geometry of this edge,
which terminates almost vertically into the substrate [3,39].
A schematic view of the graphene nanoconstriction

obtained by STM lithography is given in Fig. 2(a). The
corresponding STM images of characteristic positions
along the cut are displayed in Fig. 2(b), showing the lower
ribbon edge, the central part, and the upper edge. The
graphene appears bright compared to the underlying
substrate. Obviously, the sidewall GNR was cut through
at the upper edge to the mesa plateau and the middle of
the ribbon, but not at the lower edge to the trench. Here, a
small patch of graphene remains, forming a narrow con-
striction with lateral dimensions of only a few nanometers.
Atomically resolved STM images ensure that the graphene
lattice in the vicinity of the cut was not damaged by the
cutting procedure as shown in Fig. 2(c). The local density
of states (LDOS), obtained by scanning tunneling spec-
troscopy, further supports these findings. Tunneling spec-
tra, Fig. 2(d), were taken directly on the cut and on the
surrounding graphene [Fig. 2(c), middle frame, red and
black dots, respectively]. The LDOS of the intact graphene
surrounding the cut exhibits the characteristic V shape, with
a tunneling conductance minimum precisely at 0 V. Hence,
the charge neutrality of the sidewall ribbon is preserved
[3,13]. On the other hand, the LDOS recorded on the cut
drops to zero for the tunneling bias voltage range
−0.50 < Vt < 0.25 V. Hence, an electronic current flow-
ing from left to right has to be transmitted through the
constriction.
The electronic transport through the sidewall GNC was

recorded by biasing the constriction with two tips placed in
Ohmic contact on the sidewall GNR with the GNC in
between (as schematically indicated in Fig. 1). The IV
characteristics of a biased sidewall GNC (L ¼ 6 nm,
W ¼ 2 nm) recorded at different temperatures in the range
from 28 to 300 K are shown in Fig. 3(a) together with a
reference measurement of the pristine, unpatterned sidewall
GNR. The pristine ribbon exhibits a completely linear IV
curve with a conductance of 1e2=h, which is characteristic
for ballistic transport in a fully nondegenerate channel [3].
In contrast, the IV curves through the constrictions are

clearly nonlinear. They can be well described by the
phenomenological Kaiser expression [40] (details are given
in Ref. [25], Sec. II), which is frequently used to describe
nonlinearities in the IV curves for carbon nanotubes. In the
low-bias regime, the opening of a small transport gap
(Δ ≈ 10 meV) is clearly visible. For T ¼ 28 K the zero-
bias conductance drops to zero. With increasing temper-
ature, the slope around zero bias increases while for
Vb > 10 meV it remains almost constant throughout the
whole temperature range.
More insight can be gained from the differential con-

ductance displayed in Fig. 3(b). The dI=dV curves were
obtained by either the numerical differentiation of the IV
curves and averaging over at least 50 individual measure-
ments, or directly by using standard low-frequency lock-in
techniques. The results of both methods agree well with

FIG. 1. Synthesis of sidewall GNCs by STM lithography. First,
a reference two-point-probe measurement is performed on the
pristine sidewall GNR to ensure the presence of a ballistic
channel. The GNC is subsequently defined into the GNR via
local etching by means of a STM tip. A second two-point
measurement probes the transport properties of the GNC.

FIG. 2. STM study of a sidewall GNC. (a) Schematic view of
the graphene structure on the SiC mesa sidewall after synthesis of
a narrow constriction with STM lithography. (b) STM images of
the top, center, and bottom part of the cut (tip voltage for imaging
Vt ¼ 3 V, tunneling current It ¼ 1 nA). In the bottom frame, the
presence of a GNC is confirmed. The red and black dots in the
middle frame indicate the locations at which spectroscopy was
performed, panel (d). (c) Atomically resolved STM topograph of
the graphene lattice in the vicinity of the cut [see blue rectangle in
(b)] (Vt ¼ 200 mV, It ¼ 100 pA). (d) dIt=dVt spectroscopy of
the GNC. Red curve: spectrum acquired directly on the cut [open-
feedback parameters (setpoint): Vt ¼ 0.2 V, It ¼ 0.2 nA, modu-
lation voltage Vrms ¼ 15 mV]. Black curve: spectrum acquired in
the vicinity of the cut on the unpatterned graphene lattice
(Vt ¼ 0.4 V, It ¼ 0.4 nA, modulation voltage Vrms ¼ 20 mV).
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each other (cf. Ref. [25], Fig. 3) and are not distinguished in
the following. In order to avoid Joule heating in these
constrictions most of the experiments were performed with
current densities not exceeding 108 A=cm2. The differ-
ential conductance curves of the sidewall GNC clearly
indicate the opening of a transport gap around zero bias
accompanied by conductance peaks located symmetrically
at about �9 mV. The positions of the conductance peaks
(VP) remain almost constant throughout the whole temper-
ature range and show only a slight decrease in the low
temperature regime. The conductance peaks are most
prominent at low temperatures and decrease with increasing
T in an exponential manner, Gpeak ∼ expð−kBT=eV0Þ, as
shown in Fig. 3(c). However, the peaks remain visible even
up to room temperature. The maximum peak value is
reached at the lowest attainable temperature T ¼ 28 K
with GP ≈ 1.6e2=h. The peak conductance is significantly
higher than the conductance of the pristine ribbon, which
indicates the opening of a second transport channel or
the restoring of spin degeneracy in the whole ribbon.

This result is surprising since dual channel transport was
found in sidewall GNRs only for contact spacings well
below 500 nm [3,25,32–36]. Here, we used contact spac-
ings d ≥ 500 nm and hence expect no contribution from
the second transport channel. The characteristic shape of
the dI=dV curve originates solely from the constriction
itself and is independent of the contact spacing. This can
be directly seen from Fig. 3(d) where two conductance
curves for two different contact spacings (d ¼ 500 nm
and d ¼ 5 μm) are displayed. The contact spacing has no
influence either on the occurrence or amplitude of the
conductance peak or the opening of a transport gap.
In order to explain the opening of a transport gap as well

as the origin of the conductance peaks, the GNC can be
viewed as a diffraction barrier. Electronic diffraction gives
rise to localized currents through the constriction, which
subsequently lead to transmission resonances [5,41]. In
analogy to subwavelength optics, the whole system can
be treated as a Fabry-Perot cavity [4]. For a more
quantitative analysis, we calculate the bias dependence

FIG. 3. Electronic transport across GNCs. (a) IV curves across a GNC with length L ¼ 6 nm and width W ¼ 2 nm for temperatures
between T ¼ 28 and 300 K. The solid lines indicate corresponding fits to the Kaiser expression [40]. The violet curve is the IV curve of
the pristine ribbon, prior to STM lithography. (b) Differential conductance of the IV curve shown in (a). Conductance peaks GP at
voltage VP are clearly visible for the complete temperature range. The violet curve is the differential conductance of the pristine ribbon.
(c) Peak conductances GP and peak voltages VP extracted from differential conductance curves. The peak conductance is exponentially
decreasing with increasing temperature while the voltage position of the peak remains constant. (d) Differential conductance across a
GNCmeasured with two different contact spacings d ¼ 500 nm and 5 μm. The inset depicts the arrangement of the probes on both sides
of the constriction.
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of the differential conductance through a GNC with a
propagating edge state. In this way, we model the GNC
system by a third nearest neighbor tight binding model
using a recursive Green’s function approach within the
common Landauer-Büttiker formulation (see Refs. [25–31],
Sec. IVof Supplemental Material, where also effects due to
disorder are discussed). Figure 4(a) shows a typical result for
a constriction with dimensionsL ≈ 1 nm andW ≈ 1.7 nm at
various temperatures. Pronounced conduction peaks are
found in the simulations, resembling nicely the experimental
findings. Thereby, the interpretation that the constrictions
give rise to resonance phenomena is strongly supported.
With increasing temperature we notice that the peaks
broaden and the peak heights decrease in a similar manner
as observed experimentally. We also want to emphasize that
for our GNC configuration the resonances originate from the
zeroth mode of the zigzag topology of the ribbons; thus,

mode coupling effects, e.g., coming along with antireso-
nances like seen in wider 2DEGwire systems, are not pivotal
in our case within the small energy window [42].
The edge state gives rise to the constant 1e2=h conduct-

ance regime for V > VP, whereas the peak features are
caused by resonances within the constriction. The energy of
the resonance is highly dependent on the length of the
constriction. which can be understood in terms of a simple
particle-in-a-box picture. Indeed, the resonance energy
follows accurately the scaling law E ∝ 1=L2 as shown in
Fig. 4(b). While the voltage position of the resonance peak
shifts drastically upon changing the dimensions of the
constriction, the general shape of the differential conduct-
ance remains almost unaltered [cf. the inset of Fig. 4(b)
where the dI=dV curves at T ¼ 298 K are shown for
constrictions of length L ≈ 6 nm (black) and L ≈ 1.5 nm
(red)]. This indicates that the underlying physical mecha-
nism that gives rise to the resonance peaks is the same for
narrow and wide constrictions.
These results show that graphene nanoconstrictions

can be effectively used as electronic diffraction barriers.
GNRs on the sidewalls of SiC mesa structures are an ideal
template for this purpose. STM lithography allows us to
define constrictions in situwith variable dimensions of only
a few nanometers. The excellent structural and electronic
quality of the self-assembled ribbons as well as the
subsequently defined constrictions give rise to electron
interference phenomena. Direct probing with local trans-
port reveals the emergence of conductance peaks and
transport gaps, which can serve as a hallmark for electron
interference. The stability of these features up to room
temperature opens up the possibility to use them in novel
electronic nanodevices. Sidewall GNRs can serve as con-
nectors between multiple constrictions as well as to the
contacts over distances of several micrometers due to their
exceptional transport properties. Hence, such devices
would solely rely on the photonlike nature of electrons
in graphene and belong to a new class of fully coherent
electronics.
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