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We study a class of Dirac semimetals that feature an eightfold-degenerate double Dirac point. We show
that 7 of the 230 space groups can host such Dirac points and argue that they all generically display linear
dispersion.We introduce an explicit tight-bindingmodel for space groups 130 and 135. Space group 135 can
host an intrinsic double Dirac semimetal with no additional states at the Fermi energy. This defines a
symmetry-protected topological critical point, and we show that a uniaxial compressive strain applied in
different directions leads to topologically distinct insulating phases. In addition, the double Dirac semimetal
can accommodate topological line defects that bind helical modes. Connections are made to theories of
strongly interacting filling-enforced semimetals, and potential materials realizations are discussed.
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A striking consequence of symmetry and topology in the
electronic structure of materials is the existence of protected
degeneracies that guarantee semimetallic behavior. Such
degeneracies occur in graphene [1] (in the absence of spin-
orbit interactions) as well as at the surface of a topological
insulator (TI) [2]. In 2011, Wan et al. [3] pointed out that
twofold-degenerate Weyl points could occur in bulk three-
dimensional (3D) materials. Such Weyl points are topologi-
cally protected, though they are “symmetry prevented” in
that they require broken inversion or time-reversal (T)
symmetry to exist. Crystal symmetries can lead to a richer
variety of nodal semimetals. Dirac semimetals [4–6], which
feature fourfold-degenerateDirac points protected by crystal
symmetry, occur in two varieties. Topological Dirac semi-
metals, such as Cd3As2 and Na3Bi [7–9], exhibit Dirac
points on a rotational symmetry axis due to a band inversion.
Nonsymmorphic Dirac semimetals, predicted in BiO2 [4]
and in BiZnSiO4 [10], conversely have Dirac points at high-
symmetry points which are guaranteed by the underlying
space group (SG) symmetry. Additional classes of nodal
semimetals include line nodes [11–20] in 3D and Dirac
semimetals in 2D [21,22].
In this Letter we introduce and analyze a double Dirac

semimetal (DDSM) that exhibits a single eightfold-
degeneracy point at a Brillouin zone (BZ) corner. We show
that 7 of the 230 SGs host double Dirac points (DDPs) and
argue that all of them generically have linear dispersion. For
two of the SGs (130 and 135) a DDP is guaranteedwhenever
the band filling is an odd multiple of 4, while for the
remaining five SGs the presence of DDPs depends on the
band ordering.We introduce an explicit tight-bindingmodel
for SGs 130 and 135 that demonstrates the DDP, and we
study its low energy structure in detail. The DDSM has
similar mobility and screening properties as the topological
Dirac semimetal. However, the two differ fundamentally
because the DDSM is symmetry tuned to a topological

quantum critical point. Like the single (nonsymmorphic)
Dirac semimetal, the DDSM can be gapped into a trivial or
topological insulator by applying strain. In DDSMs, both
phases can be achieved with compressive strain oriented
along two different directions. Moreover, in the DDSM,
spatiallymodulating the symmetry-breaking energy gap can
lead to topological line defects that bind 1D helical modes.
These features open new possibilities for topological band
structure engineering.Materials hostingDDPs are discussed
at the end of the Letter.
The existence of symmetry-protected degeneracies at a

point K in the BZ can be ascertained by determining the
dimension of the appropriate double-valued projective
representations of the little group of K’s. This information
has been tabulated for all 230 SGs [23]. Table I lists all of
the SGs with symmetry points that host four-dimensional

TABLE I. Space groups that host DDPs. SGs are indicated in
International notation as well as in Shönflies notation, which
indicates the crystal system and point group. The momentaK are
listed with symmetry labels for the 8DIRs, as well as for some
4DIRs. The final column indicates the T-invariant vector repre-
sentations of the point group contained in the tensor product
Γ� ⊗ Γ of the 8DIR at K, indicating that, in each case, a linear
dispersion is generic.

Space group K Reps at K Vector reps

130 P4=ncc ΓqD8
4h A Γ⊕2

5 ð8Þ 4Eu ⊕ 3A2u

135 P42=mbc ΓqD13
4h A Γ⊕2

5 ð8Þ 4Eu ⊕ 3A2u

218 P4̄3m ΓcT4
d R Γ6 ⊕ Γ7ð4Þ, Γ⊕2

8 ð8Þ 2T2

220 P4̄3d Γv
cT6

d H Γ6 ⊕ Γ7ð4Þ, Γ⊕2
8 ð8Þ 2T2

222 Pn3n ΓcO2
h R Γ5ð4Þ, Γ6 ⊕ Γ7ð8Þ 3T1u

223 Pm3n ΓcO3
h R Γ5ð4Þ, Γ6 ⊕ Γ7ð8Þ 3T1u

230 Ia3d Γv
cO10

h H Γ5ð4Þ, Γ6 ⊕ Γ7ð8Þ 3T1u
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irreducible representations (4DIRs) that are also doubled by
T symmetry [24].
SGs 130 and 135 have the distinguishing feature that

there is only a single 8DIR at the A point. Therefore, groups
of eight bands “stick together,” implying that an insulator is
only possible when the band filling is a multiple of 8.
Interestingly, Watanabe et al. (WPVZ) [25] recently intro-
duced a bound on the minimal filling for an insulator that
applies to strongly interacting systems. The WPVZ bound
for SG 130 is 8, in agreement with the band theory analysis,
while for SG 135 the WPVZ bound of 4 disagrees with
band theory [25]. Below, we show that for SG 130, but not
for SG 135, additional single Dirac points are present when
the filling is an odd multiple of 4. Since the energy of the
single and DDPs will differ, SG 130 will generically host a
semimetal with electron and hole pockets. In contrast, in
SG 135 the DDP is the only required degeneracy, so SG
135 can host an intrinsic DDSM. The fact that the
symmetry-guaranteed DDP is not covered by the WPVZ
bound poses the interesting question of whether strong
interactions can open a symmetry-preserving gap in
SG 135.
For the remaining five SGs in Table I there are 4DIRs in

addition to the 8DIRs at K. Therefore, the presence of
DDPs at the Fermi level depends on the band ordering, as it
does in group IV semiconductors where band inversion in
grey tin leads to a fourfold degeneracy at EF [26] with
quadratic dispersion. To determine whether the dispersion
at the DDPs is linear we check whether the T-odd vector
representation(s) are contained in the tensor product
Γ ⊗ Γ� of the 8DIR at K [4]. This is found by computing
the character of the symmetric Kronecker square [23] of Γ
and using the orthogonality of characters to project onto the
vector representation. This analysis, which agrees with the
specific example worked out below, predicts the multiple
vector representations listed in Table I. Therefore, in all
cases the dispersion near K will generically be linear. The
DDP is anisotropic for the tetragonal structures 130 and
135, while for the remaining cubic structures it is isotropic.
We now introduce an explicit tight-binding model for

SGs 130 and 135. These SGs share the same tetragonal
structure and are characterized by the symmetry generators
in Table II. We introduce a unit cell [Fig. 1(a)], with four
sublattices indexed by ðτz; μzÞ ¼ ð�1;�1Þ associated with

basis vectors d ¼ 1
2
½ð1 − τzÞð1

2
1
2
0Þ þ ð1 − μzÞð00 1

2
Þ�. This

can be viewed as a distortion of a parent Bravais lattice [21]
in which the four sublattices are related by pure trans-
lations. Nearest neighbor hopping on this parent lattice is
described by

H0ðkÞ ¼ txyτx cos
kx
2
cos

ky
2
þ tzμx cos

kz
2
; ð1Þ

where we choose a gauge in which the state associated with
sublattice ðτz; μzÞ has phase expðik · dÞ, so

HðkþGÞ ¼ e−iG·dðτz;μzÞHðkÞeiG·dðτz;μzÞ: ð2Þ

SGs 130 and 135 involve lowering the translational
symmetry while keeping different nonsymmorphic glide
and screw symmetries. The symmetry generators are
represented by operators on the eight-dimensional spin
and sublattice spaceDðfgjtgÞ listed in Table II. In addition,
T symmetry is represented by Θ ¼ iσyK. Symmetry-
lowering perturbations H ¼ H0 þ V must satisfy

VðgkÞ ¼ DðfgjtgÞ†VðkÞDðfgjtgÞ; ð3Þ

Vð−kÞ ¼ ΘVðkÞΘ−1: ð4Þ

It is straightforward to enumerate the allowed terms for
each SG. In general, there are 28 terms consistent with
inversion and T. Equations (2)–(4) determine the k

FIG. 1. (a) Model lattice for the common tetragonal structure of
SGs 130 and 135. The solid lines indicate the four-site unit cell,
and solid circles denote the four sublattices labeled by
ðτz; μzÞ ¼ ð�;�Þ. (b) Tetragonal Brillouin zone. (c) Energy
bands for SG 130, described by the tight-binding model (1),
(5) with txy ¼ 1, tz ¼ 0.5, and λ1 ¼ λ2 ¼ λ3 ¼ 0.3. In addition to
the DDP at A, there is a symmetry-guaranteed Dirac point on the
line Z-R. (b) Bands for SG 135, described by (1), (6) with
txy ¼ 1, tz ¼ 0.5, t01 ¼ t02 ¼ 0.3, λ01 ¼ 0.3, λ02 ¼ 0.1, λ03 ¼ 0.25.
There is a single DDP at A with no other crossings.

TABLE II. Symmetry generators for SGs 130 and 135, along
with their representations in the sublattice-spin space.

SG 130 SG 135

fgjtg DðfgjtgÞ fgjtg DðfgjtgÞ
fC4zj000g eiπσ

z=4 fC4zj00 1
2
g μxeiπσ

z=4

fC2xj 12 12 0g iτxσx fC2xj 12 12 0g iτxσx

fIj 1
2
1
2
1
2
g τxμx fIj000g 1
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dependence of each term. Here, in order to faithfully
characterize the degeneracy pattern of the band structures,
we consider a simplified model with a subset of crystal field,
hopping and spin-orbit terms that respect Eq. (4) and are
sufficient to lift all nonessential degeneracies. These quali-
tative features are reflected in the specific materials band
structures discussed in the Supplemental Material [27]:

V130 ¼ λ1τ
zμy cos

kz
2
þ λ2τ

zðσx sin ky − σy sin kxÞ

þ λ3τ
xμz

�
σx sin

kx
2
cos

ky
2
þ σy cos

kx
2
sin

ky
2

�
; ð5Þ

and

V135 ¼ t01μzðcos kx − cos kyÞ þ t02τ
yμy sin

kx
2
sin

ky
2
cos

kz
2

þ λ01τ
yμx

�
σx sin

kx
2
cos

ky
2
þ σy cos

kx
2
cos

ky
2

�
sin

kz
2

þ λ02τ
xμy

�
σx cos

kx
2
sin

ky
2
þ σy sin

kx
2
cos

ky
2

�
sin

kz
2

þ λ03τ
yμzσz cos

kx
2
cos

ky
2
ðcos kx − cos kyÞ: ð6Þ

Figures 1(c) and 1(d) show energy bands associated with
these models. Each band is at least doubly degenerate. Both
cases feature a DDP at A with linear dispersion in all
directions. SG 130 features an additional fourfold crossing
along the line Z − R. This crossing is protected by T,
inversion, and the C2x screw, whose axis is displaced from
the center of inversion. This guarantees that the Kramers-
degenerate pairs of states on this line share the same
eigenvalue of the C2x screw, allowing pairs with different
eigenvalues to cross. A similar crossing occurred in the
Dirac ring found in Refs. [11,14] and was locally charac-
terized in Ref. [33]. In fact, this crossing is guaranteed by
symmetry since it is not possible to eliminate it by
reordering the bands at Z or R. This pattern of degeneracies
guarantees that groups of eight bands stick together,

independent of the DDP at A, and appears to be correlated
with the WPVZ bound.
Since the additional Dirac points need not be at the same

energy as the DDP, SG 130 will generically be a semimetal
with electron and hole pockets. In contrast, SG 135 has no
additional Dirac points, so it can host an intrinsic DDSM.
However, we find that for λ02 > λ01 there are additional
single Dirac points along the lines A − Z. These arise due to
a “velocity inversion” transition at λ02 ¼ λ01, which we
analyze below. A similar velocity inversion occurs in
130 for λ3 > 2λ2.
We now focus on SG 135 and consider the low energy

structure near the DDP. There are no symmetry-respecting
terms at A that lift the degeneracy. To determine the terms
linear in k we identify the T-odd operators transforming
in the vector representations of the point group D4h.
Using Eqs. (2)–(4), the representations of the symmetry
operations at A are dAðfC4zj00 1

2
gÞ ¼ τzμx exp iπσz=4,

dAðfC2xj 12 12 0gÞ ¼ τyμzσx and dAðfIj000gÞ ¼ μz. Also,
ΘA ¼ iμzσyK. We find four (three) terms with Eu (A2u)
symmetry, in agreement with the general analysis of
Table I. The k · p Hamiltonian at A is

HA ¼ ðu0τxμyσx þ u1τyμxσy þ u2μyσy þ u3τzμyσxÞkx
þ ðu0τxμyσy þ u1τyμxσx þ u2μyσx − u3τzμyσyÞky
þ ðv1μx þ v2τyμy þ v3τxμyσzÞkz: ð7Þ

This leads to the dispersion

E2
�ðkÞ ¼ ðjuj2 þ u20Þðk2x þ k2yÞ þ jvj2k2z

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2xk2yjuj2u20 þ ðk2x þ k2yÞk2zðu · vÞ2

q
; ð8Þ

where u ¼ ðu1; u2; u3Þ and v ¼ ðv1; v2; v3Þ. When
ju0j ¼ juj, one of the branches vanishes on the line
kx ¼ ky, kz ¼ 0, identifying the velocity inversion transi-
tion along A − Z discussed above. From the tight-binding
model, we have u ¼ ðλ01; 0; 0Þ, u0 ¼ λ02, so we identify
ju0j < juj with the intrinsic DDSM phase with no addi-
tional degeneracies.
Lowering the symmetry by external perturbations, such

as strain, provides a powerful tool for engineering gapped
topological phases [34,35]. We therefore consider the long-
wavelength symmetry-breaking perturbations that open
energy gaps and identify the resulting phases that arise.
General symmetry-breaking perturbations are classified by
their symmetries under the D4h point group, which can be
determined from dAðfgjtgÞ, as above. The possible T-
invariant perturbations at A are listed in Table III. There are
many terms, and their effects depend on the form of the
velocity terms. In order to organize the behavior, we first fix
the velocity terms and examine the terms that can open a
gap in the spectrum. We find that there are precisely four
mass terms that arise due to perturbations with specific
symmetries. The Hamiltonian has the form

FIG. 2. (a) Phase diagram as a function of three symmetry-
breaking perturbations. A topologically nontrivial loop in the
WTI phase is indicated by the dashed circle. (b),(c) Uniaxial
strain along different directions leads to topologically distinct
insulating states. (d) A topological line defect in an insulating
state binds a gapless 1D helical mode.
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H ¼ u2μyðσykx þ σxkyÞ þ v1μxkz þmA2g
τxμz

þmB2g
τzμz þmB1g

μz þmA1u
τyμyσz: ð9Þ

The four mass terms are the unique terms from Table III
that anticommute with all three of the velocity terms and
open a gap. They fall into two groups. m1 ¼ ðmA2g

; mB2g
Þ

and m2 ¼ ðmB1g
; mA1u

Þ anticommute among themselves
but commute with each other, leading to an energy gap
Egap ¼ 2jmj, with m ¼ jm1j − jm2j. There are two phases
distinguished by sgnðmÞ ¼ þ1ð−1Þ. Using parity eigen-
values [34,36], we identify them as a [0;110] weak TI
(WTI) and a [1;001] strong TI (STI). While these indices
depend on the details of the band structure away from the
DDP, the difference between the phases is robust. To
visualize the phases, Fig. 2(a) shows a phase diagram
for mA1u

¼ 0. In this 3D space, the STI (WTI) is inside
(outside) a cone. In the more general 4D phase diagram, the
WTI and STI phases appear symmetrically.
Different combinations of velocity terms lead to different

choices for the anticommuting mass terms. However, for
any combination of velocity terms in Eq. (7), it can be
exhaustively verified that there is one anticommuting term
with each of the symmetries in Eq. (9). Therefore, a generic
perturbation with a given symmetry induces the corre-
sponding mass term and opens a gap. The general structure
of Fig. 2(a) remains, except that, when the inversion-
symmetry-breaking term mA1u

is present, the boundary
between the STI and WTI phases broadens to include a
Weyl semimetal phase [37].
The dependence of the topological state onmB1g

andmB2g

provides a mechanism for controlling topological states
using strain. As indicated in Figs. 2(b) and 2(c), uniaxial
strain along the x or y directions induces a perturbation with
a combination of A1g and B1g symmetry, while uniaxial
strain along the diagonal x� y directions has A1g and B2g

symmetry. Therefore, these two kinds of compressive strain
lead to topologically distinct insulators.
DDPs can also be differentiated from single Dirac

semimetals by the existence of two distinct anticommuting
mass terms that lead to the same topological phase. For a
single Dirac semimetal with 4 × 4 Dirac matrices, the
general structure of Clifford algebras predicts that there is
only a single T-invariant mass term that anticommutes with
the three T-odd anticommuting velocity terms. For 8 × 8
Dirac matrices there are two anticommuting T-invariant
mass terms. This means that the space of gapped states has a
nontrivial first homotopy group, indicated by the dashed
circle in Fig. 2(a), allowing topologically nontrivial line
defects [Fig. 2(d)]. Line defects in a 3D insulator in class AII
have a Z2 topological invariant characterizing the (3þ 1)D
Hðk; θÞ [38]. When nontrivial, this guarantees that a 1D
helical mode is bound to the line, similar to the helical mode
bound to a lattice dislocation in a weak TI [39]. Without a
lattice dislocation, this Z2 invariant is inaccessible in a four
band system because it derives via dimensional reduction
[40] from a third Chern number in ð3þ 1þ 2ÞD, which
requires at least eight bands. To establish that a line defect
binds a 1D helical mode, we follow the analysis of Ref. [38]
and consider a simplemodelwithmB2g

¼ ax,mA2g
¼ ay and

u1 ¼ v2 ¼ v.H2 in Eq. (9) then takes the formof a harmonic
oscillator, and there is a single pair of modes withE ¼ �vkz
localized near x ¼ y ¼ 0.
We finally briefly consider perturbations in Table III with

the remaining symmetries, which lead to Weyl or Dirac
semimetals. The Eg perturbations lead to either Dirac points
or a Dirac ring, with fourfold-degenerate crossings. The
inversion-breaking perturbations generally lead to a Weyl
semimetal with twofold crossings, except for A2u, where the
remainingC2z and glidemirror symmetries guarantee doubly
degenerate states for kx ¼ ky ¼ π with the same C2z eigen-
value. This allows degenerate bands to cross along A-M,
protecting a Dirac point even though inversion is violated.
Encouragingly, the DDP appears to be feasible in known

materials [27]. For example, a ternary bismuth aurate,
Bi2AuO5 in SG 130, which has been synthesized in a single
crystal [41], hosts a DDP at A close to the Fermi level, with
additional fourfold degeneracies appearing on Z-R (Fig. 3).
As for materials in SG 135, the Materials Project [42]
shows that a class of oxide materials isostructural with
Pb3O4 [43], including SnðPbO2Þ2, Pb3O4, and MgðPbO2Þ2,
host the DDPs in the valence energy regime. Although they
are semiconductors with electron filling 8, their atomic
structure allows for a potential route towards a material
design that shifts the Dirac point near the Fermi level. The
number of atoms per each species in a unit cell is 4 (mod 8)
and thus allows for filling 4 when suitably substituting
atoms with an odd number of valence electrons. In SG 223,
GaMo3 [44] hosts a DDP. There is reason for optimism that
with appropriate band structure engineering, an intrinsic
DDSM can be realized.

TABLE III. Perturbations to the DDP in SG 135, classified by
their symmetry under the D4h point group [23]. The resulting
insulating and semimetallic (SM) phases are indicated.

A1g 1 Double Dirac SM
A2g τxμz τyμzσz τz Weak TI
B1g μz Strong TI
B2g τx τyσz τzμz Weak TI
Ex;y
g τyσx;−y τyμzσx;y Dirac line/point SM

A1u τxμy τyμyσz μxσz Strong TI
A2u τzμzσz Dirac point SM
B1u τzμy Weyl point SM
B2u τxμxσz τyμx μy Weyl point SM
Ex;y
u τxμxσx;−y τzμxσx;y Weyl point SM

τyμyσy;−xμxσy;−x
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FIG. 3. (a) Band structure of Bi2AuO5 in SG 130, obtained
from first-principles calculations. The DDP appears at A with
extra Dirac points along R-Z. See the Supplemental Material [27]
for the methods.
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