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The reversed field pinch (RFP) device RFX-mod features strong internal transport barriers when the
plasma accesses states with a single dominant helicity. Such transport barriers enclose a hot helical region
with high confinement whose amplitude may vary from a tiny one to an amplitude encompassing an
appreciable fraction of the available volume. The transition from narrow to wide thermal structures has
been ascribed so far to the transport reduction that occurs when the dominant mode separatrix, which is a
preferred location for the onset of stochastic field lines, disappears. In this Letter we show instead that the
contribution from the separatrix disappearance, by itself, is marginal and the main role is instead played by
the progressive stabilization of secondary modes. The position and the width of the stochastic boundary
encompassing the thermal structures have been estimated by applying the concept of a 3D quasiseparatrix
layer, developed in solar physics to treat reconnection phenomena without true separatrices and novel to
toroidal laboratory plasmas. Considering the favorable scaling of secondary modes with the Lundquist
number, these results open promising scenarios for RFP plasmas at temperatures higher than the presently
achieved ones, where lower secondary modes and, consequently, larger thermal structures are expected.
Furthermore, this first application of the quasiseparatrix layer to a toroidal plasma indicates that such a
concept is ubiquitous in magnetic reconnection, independent of the system geometry under investigation.
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Introduction.—Magnetic field line reconnection, a proc-
ess that converts magnetic field energy into kinetic and
thermal energy, is at the heart of several phenomena in
laboratory and astrophysical plasmas [1,2]. In the reversed
field pinch (RFP) toroidal configuration for the confine-
ment of fusion relevant plasmas [3], the same resonant
tearing modes that self-sustain the configuration cause field
line reconnection and make the magnetic field stochastic.
However, the field stochasticity and the entailed anomalous
transport are mitigated when the plasma accesses the
quasisingle helicity state [4], where a single resonant mode
dominates the spectrum of the secondary instabilities. In
RFX-mod [5], the world’s largest RFP experiment, quasi-
single helicity plasmas feature steep electron temperature
gradients, interpreted as internal transport barriers (ITBs)
[6,7]. Such ITBs enclose helical thermal structures located
inside the magnetic island of the dominant mode. A
reduction of heat transport inside magnetic islands is
observed also in tokamak and stellarator devices [8,9],
and its active control is studied through the application of
resonant magnetic perturbations [10]. In RFX-mod the
spatial extent of thermal structures varies significantly;
some of them are narrow and located off axis, while others
are wide enough to enclose the geometrical axis. To date,
such differences have been correlated to the topology of
the magnetic field, determined by the combination of the
axisymmetric equilibrium field with that due to the dom-
inant mode. Specifically, earlier studies highlighted the
major role played by the island separatrix, the magnetic

surface that, in states with a double magnetic axis (DAx)
[11], separates the surfaces nested around the main mag-
netic axis from those nested around the island O point.
While narrow thermal structures feature a double axis with
the separatrix, wide thermal structures occur when the
dominant mode is large enough to make the separatrix
disappear and the magnetic surfaces become nested around
a single helical axis (SHAx) [12], the so-called saddle-node
bifurcation. The explanation that was found is that the
separatrix contains the X point, the magnetic null where
field lines connect; since the X point favors the develop-
ment of chaos generated by further perturbations, wider
well confined regions are expected when the separatrix
disappears [13]. In this Letter we show that the size of
thermal structures is only marginally affected by the
separatrix disappearance since it features a regular increas-
ing trend with the dominant mode amplitude even across
the DAx-SHAx transition. Moreover, there is a good
correlation between the widening of thermal structures
and the reduction of secondary mode amplitude, particu-
larly that of the subdominant ones.
Our study benefits from three factors. First, the improve-

ment of the helical force-free equilibrium field calculated
with the SHEq code [14,15]. Indeed, while the calculation of
the equilibrium was partially done in cylindrical geometry
previously [12], the code now has been made fully self-
consistent in toroidal geometry [16]. The difference in the
magnetic quantities between the two calculations is small
but not negligible. In fact, the improved reconstruction
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accurately demonstrates that the kinetic pressure is a helical
flux function [16,17] and allows the detailed characteriza-
tion of the core magnetic field undergoing the saddle-node
bifurcation [18]. A second important contribution is given
by the collection of a large database of about 230 electron
temperature Te profiles featuring ITBs, measured along the
machine horizontal diameter with a Thomson scattering
diagnostic [19]. Such profiles were measured in quasisingle
helicity plasmas, whose dominant helicity has the poloidal
number m ¼ 1 and the toroidal number n ¼ −7. The third
element of novelty is the interpretation of experimental data
by means of the quasiseparatrix layer (QSL) concept,
developed in solar physics to study magnetic reconnection
phenomena without magnetic nulls [20], and adapted here
to a toroidal geometry. The QSL is used to estimate
quantitatively the size of the stochastic boundaries sur-
rounding the ITBs. The conclusion of this study is that the
process of thermal structure broadening, which results in an
increase of the energy confinement time, is mainly driven
by the stabilization of secondary modes. Since the secon-
dary modes are stabilized by increasing the Lundquist
number [21]—namely, increasing the temperature that in
our Ohmic plasmas is approximately proportional to the
plasma current—wider thermal structures and enhanced
energy confinement are expected at higher currents. The
above phenomenology shares many similarities with the
results of heat transport control experiments performed in
the Large Helical Device [22].
Analysis of thermal structure width.—The extent of the

thermal structure is defined as the width WTe
of the region

where Te exceeds by more than 30% the electron temper-
ature averaged over the plasma internal region (r ≤ 0.35 m)
(Fig. 1). Figure 2(a) shows that WTe

grows as the toroidal
component of the dominant mode b1;−7T , measured at the
edge and normalized to the edge magnetic field Ba,
increases. However, there is a smooth transition between
DAx states and SHAx states. This transition is located at

roughly b1;−7T ¼ 1.5%; this value is lower by almost a
threefold factor with respect to previous findings [12].WTe

increases steadily and about linearly up to b1;−7T ∼ 2.5%.
From this point onwards, there is a moderate but evident
change in slope up to b1;−7T ∼ 3.5%, while thermal struc-
tures remain located off axis. Above such a threshold [12],
the barrier suddenly extends, encompassing both sides of
the geometrical axis. The plot shows that thermal structures
are off axis not only in DAx topologies but also in SHAx
ones. The latter cases, which feature narrow structures in
single helical axis states, will hereafter be called SHAxn.
Conversely, the cases with wide thermal structures, pre-
viously simply called SHAx [12], will hereafter be referred
to as SHAxw. The transition from narrow to wide thermal
structures observed at b1;−7T ∼ 3.5% cannot be ascribed
to the transport mitigation induced by the saddle-node
bifurcation, which occurs at lower b1;−7T , and calls for an
additional chaos healing mechanism. If we plot the
ensemble-averaged spectrum of secondary modes versus
the dominant one [Fig. 2(b)], we observe a decrease of their
amplitudes, especially for the two innermost resonant,
subdominant modes n ¼ −8, −9, when b1;−7T > 2.5%; in
particular, the n ¼ −8 mode, which usually is the largest
one, becomes comparable to the other modes with a higher
toroidal number in the SHAxw spectra. Moreover, the
angular velocity of the two subdominant modes nearly
doubles for SHAxw with respect to the average value of
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FIG. 1. Temperature profile (triangles) measured along a
horizontal diameter, featuring a thermal structure overplotted
to the magnetic surfaces. The vertical lines mark the structure
width WTe

. The red surface is SQSL, defined in the text.
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FIG. 2. (a) Thermal structure width WTe
versus the dominant

mode amplitude b1;−7T . (b) Ensemble-averaged amplitude of
selected secondary modes versus b1;−7T .
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∼70 Hz seen in DAx and SHAxn plasmas. Since the island
width is proportional to the mode amplitude and is
inversely proportional to the angular velocity [23], the
above analysis indicates that SHAxw plasmas feature the
smallest n ¼ −8, −9 islands. This in turn suggests that
SHAxw structures might occur when the reduced over-
lapping of n ¼ −8, −9 mode islands mitigates the field
stochasticity between the two resonance radii. This hypoth-
esis is supported by Fig. 3, where the positions of ITB
outermost points (ρTH) are compared with the positions ρ8
and ρ9 of the n ¼ −8, −9 mode resonances, according to
the safety factor q of the helical equilibrium calculated as
in Ref. [24]. Since q and Te are helical flux functions,
the helical radial coordinate ρ [14] is used. It is seen
that both resonances are external to DAx and SHAxn
structures (ρ8;9 > ρTH), suggesting that in such plasmas the
island overlap induces a strong stochasticity that prevents
the formation of thermal gradients between ρ8 and ρ9.
Conversely, SHAxw structures include ρ8, so that the ITB
gradients lie between the two resonances (ρ8 < ρTH < ρ9).
This implies that, in the latter case, the stochasticity is
mitigated due to the smaller island size.
Implementation of the QSL model.—As shown in the

previous section, narrow thermal structures steadily enlarge
as b1;−7T increases. Such a dependence, and the minor role
played in such a process by the X point disappearance,
suggests that the vulnerability to magnetic chaos is related
to a more global property of the magnetic topology. Our
aim is to define such a property, through a model that also
includes the variation of magnetic perturbations shown in
Fig. 2(b). Since most of the narrow thermal structures are
observed when the separatrix is absent, we took inspiration
from the effort done by the solar physics community to
explain the occurrence of solar flares in the absence of
magnetic nulls [25]. The concept of separatrix has been
generalized in 3D configurations to quasiseparatrix layers,
defined as regions where there is a continuous, significant
change of field line linkage [26]; if a separatrix exists it is

part of the QSL as a particular case of discontinuous field
line linkage. Considering the lines that connect photo-
spheric areas of positive and negative magnetic polarities
through a map rþ ↦ r−, a QSL is found where such a
mapping results in a squashing of the flux tube cross
sections, for example, when a tiny circular region is
mapped to a very elongated elliptical region. In analogy
to solar physics, we assume that in our plasma quasisepar-
atrix layers behave physically like separatrices; the squash-
ing of flux tubes becomes the global property that plays the
role of seed for the chaos induced by magnetic perturba-
tions. The most used indicator to identify a QSL is the
squashing degree Q [27,28], a pure number proportional to
the norm of the Jacobian matrix of the map. AQSL is found
where Q exceeds a threshold, whose value is typically
based on the Q profile itself, defining, for example, the
QSL width as the full width at half maximum of the Q
profile [29]. While solar physics and a previous QSL
application to laboratory plasmas [30] address a line-tied
problem, in a toroidal system a field line covers ergodically
its magnetic surface and has infinite foot points on a
poloidal plane. This prevents the use of Q; therefore,
we defined a more suitable indicator directly related to
the flux tube squashing. The flux tube cross sections are the
poloidal cross sections of the magnetic surfaces at the
toroidal angle of the Thomson scattering diagnostic. Their
squashing is defined through the dilatation that an infini-
tesimal area element dS, enclosed between two magnetic
surfaces, undergoes when moving poloidally from a posi-
tion where the surfaces are compressed to one where they
are stretched. The surface dilatation is defined as the ratio
between the “stretched” area dSs and the “compressed”
area dSc, both taken under an arc of length dL [Fig. 4(a)].
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FIG. 3. Resonance positions of the n ¼ −8, −9 modes, ρ8 (red
triangles) and ρ9 (green diamonds), plotted versus the position
ρTH of the ITB outermost points. Full symbols refer to DAx and
SHAxn states, whereas empty symbols pertain to SHAxw states.
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FIG. 4. (a) Depiction of variables used in Eq. (1). Magnetic
surfaces of (b) a SHAx and (d) a DAx case. The red line is the
collection diameter of rc and rs, the red full segment is the array
of rc values. The two red surfaces bound the QSL. (c),(e) rs and
D versus rc. The horizontal red line indicates the D ¼ Dth values
of SQSL, the innermost red surface of (b) and (d). The highest
value of D (blue diamonds) identifies (b) the blue quasiseparatrix
surface and (d) the separatrix.
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Calling rs and rc the radial positions of dSs and dSc,
respectively, the surface dilatation is

dSs
dSc

∼
dLdrs
dLdrc

¼ drs
drc

: ð1Þ

The new indicator D is the surface dilatation, compensated
for by the flux tube expansion due to the toroidal magnetic
field as in Ref. [27]. Both rs and rc are collected along the
diameter [Figs. 4(b) and 4(d)] that crosses the magnetic axis
in SHAx states or the island O point in DAx states. Such a
diameter intersects each magnetic surface twice: the rc
values are the radii of intersections found moving outwards
from the magnetic axis, while the radii of intersections
in the opposite direction give the rs values. The chosen
mapping rc ↦ rs is continuous in SHAx, while it is dis-
continuous in the DAx case at the separatrix [Figs. 4(c) and
4(e)], where D is the maximum. The SHAx surface having
the highest D value may be seen as the remnant of the
separatrix and will be called the quasiseparatrix surface.
The QSL is the set of the most squashed surfaces, identified
by the condition thatD be higher than the thresholdDth; its
innermost surface SQSL encloses a set of weakly squashed
surfaces, having D < Dth. Under the hypothesis that the
surface squashing favors the development of magnetic
chaos, the QSL should correspond to the highly stochastic
region surrounding magnetic surfaces more resilient to the
magnetic chaos, which in turn host the thermal structures.
Hence, the thermal structure width is estimated by comput-
ing the segment WQSL of the Thomson scattering line of
sight enclosed by SQSL. To derive a threshold value for D
related to the strength of the perturbations, Dth has been
taken as inversely proportional to the width Δ1;−8 of the
n ¼ −8 mode magnetic island, which is closest to the
thermal gradients:

Dth
−1 ¼ A

ffiffiffiffiffiffiffiffiffiffi

b1;−8r;res

q

∝ Δ1;−8; ð2Þ

where b1;−8r;res is the radial field at the resonance radius and A
is a constant whose value is fixed, matchingWTe

andWQSL

in a few reference SHAxn cases with b1;−7T ∼ 2%. In
Figs. 4(b) and 4(d), the red lines identify the QSL region,
which is located in the interface region among beanlike and
circularlike magnetic surfaces. Figure 5(a) shows WQSL

versus b1;−7T for the same database of narrow barriers as
Fig. 2. The agreement between the experimental width and
the calculated one is remarkable: in particularly similar
WQSL values are found for DAx and SHAx states with
b1;−7T ∼ 1.5%. The dependence of the threshold on b1;−8r;res

yields a nice fit to the increasing trend ofWTe
, reproducing

even the slope change observed at b1;−7T > 2.5%, although
Fig. 5(b) shows that the model tends to underestimate the
experimental widening. Another interesting result comes
from the comparison of the quasiseparatrix helical coor-
dinate ρQS with ρ8 and ρTH. The ordering ρ8 > ρQS > ρTH,

found in narrow thermal structures with low values of b1;−7T ,
modifies to ρTH > ρQS > ρ8 in the case of SHAxw. This
means that the well confined region enclosed by the ITB of
SHAxw structures expands beyond the region that hosts the
stochastic QSL of narrow structures. Moreover, when the
QSL model is applied to SHAxw cases, Dth is typically
higher than the maximum value of D; hence, no stochastic
QSL is found.
Conclusions.—This Letter shows that, in RFX-mod, the

width of thermal structures enclosed by ITB features an
increasing trend with the dominant mode amplitude. Such a
trend is continuous and smooth even at the saddle-node
bifurcation, and it is mainly driven by the stabilization of
secondary modes. In particular, the confinement increase
associated with the transition from SHAxn to SHAxw is
due to the stabilization of the two subdominant modes.
This result provides positive expectations for RFP plasmas
with enhanced heating since, while it is difficult to envisage
further bifurcations driven by the dominant mode, secon-
dary modes are experimentally observed to be stabilized by
increasing the Lundquist number, and their amplitude is
theoretically predicted [31,32] to decrease with the plasma
current. A deeper understanding of the above results is
obtained by introducing the concept of quasiseparatrix
layer, used to date to localize magnetic reconnection events,
as the stochastic region that surrounds the thermal struc-
tures. This novel interpretation paves the way for the
exploitation of the QSL concept in tokamaks and stella-
rators, providing a relatively simple method for estimating
the stochastic layer width in experiments of transport
control by resonant magnetic perturbations [22]. A further
novel aspect of the QSL application presented here regards
the link between the QSL threshold and a physical
parameter having a relevant role in the process under
examination. This choice, which provided a good match
between experimental and model results, offers an alter-
native to the habit of determining the threshold from the
topology itself. As a final remark, we emphasize that the
above results validate the QSL model in a parameter space
different from that in previous work. We extended the
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concept to a toroidal free-boundary system, while previous
applications were in line-tied geometry. Hence, this
Letter demonstrates that the QSL is ubiquitous in three-
dimensional magnetic reconnection.
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