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Recent in vitro experiments with FtsZ polymers show self-organization into different dynamic patterns,
including structures reminiscent of the bacterial Z ring. We model FtsZ polymers as active particles moving
along chiral, circular paths by Brownian dynamics simulations and a Boltzmann approach. Our two
conceptually different methods point to a generic phase behavior. At intermediate particle densities, we find
self-organization into vortex structures including closed rings. Moreover, we show that the dynamics at the
onset of pattern formation is described by a generalized complex Ginzburg-Landau equation.
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Intracellular structuring is often facilitated by the active
dynamics of cytoskeletal constituents. The origin of these
driven dynamics and their impact on pattern formation has
been extensively studied using artificial motility assays of
cytoskeletal filaments [1–4]. Another intriguing example of
self-organization due to driven filaments was reported
recently by Loose and Mitchison [5]. In vitro, the bacterial
protein FtsZ forms membrane-bound, intrinsically curved
polymers. These seem to exhibit treadmilling dynamics
(consuming guanosine triphosphate) and, as a result, move
clockwise on the membrane. Depending on the protein
density, polymers cluster into dynamic structures such as
rotating rings or jammed bundles, despite the absence of
attractive interactions [6]. These ring structures are of
particular interest, since, in vivo, FtsZ builds the contractile
Z ringwhich drives cell division in a yet unknownway [7–9].
But also in the in vitro experiments, the pattern-forming
mechanism remains unclear even on a qualitative level.
Motivated by these experimental findings, we have

studied pattern formation in a class of active systems,
where particles move on circular tracks and interact only
via steric repulsion. To assess the dynamics of this class, we
consider two conceptually different models: First, we
emulate active particles as elastic polymers with fixed
intrinsic curvature that move with a constant tangential
velocity [Fig. 1(a)] and perform Brownian dynamics sim-
ulations. Second, we employ a kinetic Boltzmann approach,
where pointlike particles move on circular paths and
undergo diffusion and binary collisions (with polar sym-
metry) according to a simplified collision rule [Fig. 1(b)].
As a result, we identify different phases of collective
behavior as a function of density and noise level. With
both approaches, we find flocking into vortex patterns in

the regime of intermediate density and noise strength. Our
simulations for extended particles predict the formation of
closed ring structures reminiscent of those found in Ref. [5],
even in the absence of any attractive interactions. In the
mesoscopic limit, our analysis yields that, close to the onset
of vortex formation, the dynamics at the onset of ordering is
characterized by a novel generalization of the complex
Ginzburg-Landau equation.
In our Brownian dynamics simulations, we consider a

system of M curved polymers of the same chirality
embedded in a two-dimensional membrane of area A with
periodic boundary conditions. Each polymer is described as
an inextensible wormlike chain [10,11] of length L, per-
sistence length lp, and intrinsic curvature κ0. For a given
polymer conformation rðsÞ, parameterized in terms of arc
length s, the overall bending energy is given by
Ebend ¼ 1

2
lpkBT

R
L
0 ds½κðsÞ − κ0�2, where κðsÞ ¼ j∂2

srðsÞj
denotes the local curvature. Excluded volume interaction is
implemented by a repulsive truncated Lennard-Jones poten-
tial. To assure motion of the filament contour on a circular
track (apart from noise), polymers are propelled with a
tangential velocity v0ðsÞ ¼ v0∂srðsÞ. This accounts for the
effective motion of treadmilling in a simplified way [12].

(a) (b)

FIG. 1. Systems of active particles, which are driven on chiral,
circular tracks with speed v0: (a) Microscopic view: Extended,
elastic polymers with intrinsic curvature, where noise and steric
interaction trigger bending of filaments. (b) Mesoscopic view:
Pointlike particles that undergo diffusion as well as binary
collisions.
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Note that, for this choice, the area explored by a circling
polymer is minimal. In the free draining limit, the dynamics
of the polymer system is then determined by a set of coupled
Langevin equations for the contours rðmÞðt; sÞ of each

polymer m ¼ 1; 2;…;M: ζð∂trðmÞ − vðmÞ
0 Þ ¼ −δE½frðnÞg�=

δrðmÞ þ ηðmÞ, balancing viscous friction with elastic and
repulsive forces generated by the total energy E and
Langevin noise η with zero mean and hηðt; sÞ·
ηðt0; s0Þi ¼ 4kBTζδðt − t0Þδðs − s0Þ. To numerically solve
the polymer dynamics, we employ a bead-spring represen-
tation of the polymers [12,17,18]. For most simulations, we
adapted length scales close to those observed in Refs. [5,8]:
κ−10 ¼0.5μm, L ¼ 0.9 μm, and lp ¼ 10 μm. The relevant
dimensionless parameters that characterize the system
are the reduced noise σ and density ρ. Here, σ ≔
kBTlp=ðζv0L2Þ relates thermal forces at length scale lp

with friction forces, and ρ ≔ ðR0=bÞ2 denotes the squared
ratio of the radius of curvature R0 ¼ κ−10 to the mean
polymer distance b ¼ ffiffiffiffiffiffiffiffiffiffi

A=M
p

.
For dilute systems ρ ≪ 1, our simulations show that each

polymer is propelled on a circular path and collisions
between polymers are infrequent; see Fig. 2(a) and Movie 1
in Supplemental Material [12]. The positions of the

polymers’ centers of curvature (CC) rðmÞ
CC are uncorrelated

as in a gas, and we refer to this state as a disordered state.
On increasing ρ, we observe that a significant fraction of
filaments begin to collide and collect into localized vortex
structures (vortex state). These ringlike structures are

highly dynamic. They assemble and persist for several
rotations, during which their centers of mass remain
relatively static; see Fig. 2(b) and Movie 2 [12]. Despite
our simplified kinetic assumption, the overall phenomenol-
ogy resembles the FtsZ patterns observed by Loose and
Mitchison [5], including vortex assembly, disassembly, and
localization. In the dense regime ρ≳ 1, where each
polymer is likely to collide, these vortices are unstable.
Instead, the polymers cluster and form jammed “trains”
that travel through the system in an irregular fashion; see
Fig. 2(c) and Movie 3 [12].
In order to quantitatively distinguish between the various

observed patterns and organize them into a “phase dia-
gram,” we consider the pair correlation function gðdCCÞ
[19,20] of distances dCC ¼ jrðmÞ

CC − rðnÞCCj between the centers
of curvature [Fig. 2(d)]. We regard a system as disordered if
gðdCCÞ exhibits a minimum at a distance dmin

CC equal to the
diameter of a free circular path, dmin

CC ≈ 2R0. This is distinct
from vortex states, where dmin

CC , defining an effective vortex
diameter, is larger than 2R0. Finally, for train states, gðdCCÞ
does not exhibit a local minimum, indicating the absence of
an isolated vortex structure; for more details, see
Supplemental Material [12]. The ensuing phase diagram
is shown in Fig. 2(d). As in other active systems [21–28],
pattern formation is favored by increasing density and
decreasing noise strength. Jammed states prevail only when
the density is high and the noise level low. Note also that
the structure of the phase diagram depends on the ratio of
filament length L to radius of curvature R0. Polymers with
an arc angle close to κ0L ¼ 2π (closed circles) retain a
single-circle structure and do not form any collective
structures upon increasing ρ (Movie 4 [12]). Conversely,
reducing κ0L suppresses the formation of closed ring
structures, due to inefficient alignment of short polymers.
Instead, these polymers cluster into flocks which move on
approximately circular paths (Movie 5 [12]). Hence, we
conclude that the range of arc angles of FtsZ polymers,
κ0L ≈ 0.6π, observed in vitro [5], facilitates the formation
of closed polymer rings particularly well [Fig. 2(b)]. In
summary, closed polymer rings require explicit curvature
and filament lengths larger than a certain threshold value.
For other interactions than local, steric repulsion ring
structures may also emerge [1,3,29]; straight, rotating rods
may form vortex arrays but not closed rings [30].
We complement the Brownian dynamics simulations of

active particles that are propelled on circular tracks by
considering the mesoscopic limit of a vanishing particle
extension. To this end, we have employed a kinetic
Boltzmann approach [24,31–36] to determine the collective
behavior and the corresponding phase transitions in this
limit, irrespective of the microscopic details of the con-
stituent particles. In detail, we simplified the active system
to one consisting of spherical particles (of diameter d)
moving clockwise with constant speed v0 on circular orbits
of radius R0. This accounts for both self-propulsion and

FIG. 2. System snapshots are provided to depict (a) disorder
(ρ ¼ 0.556, σ ¼ 0.987), (b) vortices (ρ ¼ 0.556, σ ¼ 0.247), and

(c) trains (ρ ¼ 1.389, σ ¼ 0.247). Curvature centers rðmÞ
CC are

depicted by light blue dots. (d) Phase portrait for varying density
ρ and noise σ: disorder states (gray rectangles), vortex states (red
circles), and train states (blue triangles). (e) Pair correlation
function gðdCCÞ for the three different states with σ ¼ 0.247 and ρ
indicated in the graph.

PRL 116, 178301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

29 APRIL 2016

178301-2



spontaneous curvature but neglects the finite extension of
the polymers as compared to our Brownian dynamics
simulations.
We further assume that a particle’s orientation is altered

by “self-diffusion” as well as by local binary collisions. In
self-diffusion, a particle’s instantaneous orientation θ
changes at rate λ into θ þ η, where we assume η to be
Gaussian distributed with standard deviation σ. As in other
particle-based active systems [32,34,37], binary collisions
are modeled by a polar alignment rule where the orienta-
tions of the collision partners align along their average
angle plus a Gaussian-distributed fluctuation; for simplic-
ity, we take the same width σ as for self-diffusion.
The kinetic Boltzmann equation [24,31–36] for the one-

particle distribution function fðr; θ; tÞ then reads

∂tf þ v0½eθ · ∂r þ κ0∂θ�f ¼ Id½f� þ Ic½f; f�: ð1Þ

It describes the dynamics of the density of particles in
phase-space element drdθ which is being convected due to
particle self-propulsion and which undergoes rotational
diffusion and binary particle collisions, as given by the
collision integrals Id½f� and Ic½f; f�, respectively; for
explicit expressions, please see Supplemental Material
[12]. Note here the critical difference from field theories
for straight-moving particles [32,38–40]; there is an addi-
tional angular derivative in the convection term, which
reflects the fact that the particles are moving on circular
orbits. In the following, we rescale the time, space, and
density such that v0 ¼ λ ¼ d ¼ 1. Then, the only remain-
ing free parameters are the noise amplitude σ, κ0, and the
mean particle density ρ̄ ¼ A−1

R
A dr

R
π
−π dθfðr; θ; tÞ mea-

sured in units of λ=ðdv0Þ, i.e., the number of particles found
within the area traversed by a particle between successive
self-diffusion events.
To identify possible solutions of the Boltzmann equation

and analyze their stability, we performed a spectral analy-
sis. Upon expanding the one-particle distribution function
in terms of Fourier modes of the angular variable,
fkðr; tÞ ¼

R
π
−π dθe

iθkfðr; θ; tÞ, one obtains

∂tfk þ
v0
2
½∂xðfkþ1 þ fk−1Þ− i∂yðfkþ1 − fk−1Þ�− ikv0κ0fk

¼ −λð1− e−ðkσÞ2=2Þfk þ
X∞

n¼−∞
In;kfnfk−n; ð2Þ

where explicit expressions for the collision kernels In;kðσÞ
are given in Supplemental Material [12]. For k ¼ 0, Eq. (2)
yields the continuity equation ∂tρ ¼ −∇ · j for the local
density ρðr; tÞ ≔ f0ðr; tÞ with the particle current given by
jðr; tÞ ¼ v0ðRef1; Imf1ÞT . In general, Eq. (2) constitutes
an infinite hierarchy of equations coupling lower- with
higher-order Fourier modes.
A linear stability analysis of Eq. (2) enables further

progress. Since In;0 ¼ 0 for all n, a state with spatially

homogeneous density ρ̄ ¼ f0 and all higher Fourier modes
vanishing is a stationary solution to Eq. (2) (disordered
state). To linear order, the dynamics of small perturbations
δfk with respect to this uniform state is given by
∂tδfk ¼ μkðρ̄; σÞδfk, where μkðρ̄; σÞ ¼ ðI0;k þ Ik;kÞρ̄−
λð1 − e−ðkσÞ2=2Þ. For a polar collision rule, as considered
here, only μ1 can become positive, defining a critical
density ρcðσÞ at μ1ðρc; σÞ ≔ 0 [Fig. 3(a)]. Above the
threshold (ρ̄ > ρc), the spatially homogeneous state is
unstable, the particle current grows exponentially, and
collective motion may emerge.
In close proximity to the critical density ρcðσÞ, a weakly

nonlinear analysis yields further insights into the dynamics
of the system and the ensuing steady states. Here we follow
Ref. [31] and assume small currents f1 ≪ 1 at the onset.
Then, balancing of the terms in the continuity equation, the
equation for f1, and terms involving f1 in the equation for
f2 implies the scaling ρ − ρ̄ ∼ f1, f2 ∼ f21 as well as weak
spatial and temporal variations ∂x=y ∼ f1, ∂t ∼ f1. To
include the lowest-order damping term in f1, we retain
terms up to cubic order in f1. This yields the following
hydrodynamic equation for the complex particle current
v0f1ðr; tÞ ¼ jxðr; tÞ þ ijyðr; tÞ:

FIG. 3. (a) Stability of homogeneous solutions of Eq. (2) as a
function of σ and ρ̄ in units of λ=ðdv0Þ. White and red areas
denote regions where finite wavelength perturbations of the
homogeneous solutions are stable and unstable, respectively.
The color code denotes the value of the maximal growth rate
Smax. (b) Dispersion relation of SðqÞ (q in units of 2π=

ffiffiffiffi
A

p
) for

ρ̄ ¼ 0.8 and σ ¼ 0.7 (short-dashed line), σ ¼ 0.6 (long-
dashed line), and σ ¼ 0.4 (solid line). Vertical lines indicate
Smax. (c) Phase diagram for density ρ̄ and σ displaying phases of
homogeneous disorder (gray rectangles), swirls (red circles), and
homogeneous order (blue triangles). The solid line marks the
analytic solution of ρcðσÞ. An overlay of (a) and (c) can be found
in Supplemental Material [12]. (d) Snapshot of swirl patterns
(ρ̄ ¼ 0.8, σ ¼ 0.7). All swirls are moving clockwise on circular
paths.
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∂tf1ðr; tÞ ¼ ½αðρ − ρcÞ þ iv0κ0�f1 − ξjf1j2f1 −
v0
2
∇ρ

− βf�1∇f1 − γf1∇�f1 þ ν∇�∇f1; ð3Þ

where ∇ ≔ ∂x þ i∂y. While this equation shows similar
functional dependencies on local density and current as
found in systems without [41] and with straight propulsion
[32], the coefficients α, ξ, ν, γ, and β are now complex
valued (for explicit expressions, please see Supplemental
Material [12]). This can be traced back to the angular
convection term in Eq. (1) or, equivalently, to the corre-
sponding phase-shift term in Eq. (2). As a consequence, the
field theory of active systems with particles moving on
circular orbits with defined chirality is generically given by
a complex Ginzburg-Landau (GL) equation with convec-
tive spatial coupling as well as density-current coupling.
This constitutes a highly interesting generalization of the
standard (diffusive) complex GL equations [42,43] and is
qualitatively different from real GL-type equations that
were previously applied in the context of self-propelled
particles [31]. Above the threshold, ρ̄ > ρcðσÞ, the active
chiral hydrodynamics described by the generalized GL
equation (3) exhibits a uniform oscillatory solution with
f1 ¼ F1eiΩ0t, i.e., a state in which particles move
on a circular (chiral) path with an angular velocity
Ω0 ¼ v0κ0 − αðρ̄ − ρcÞIm½ξ�=Re½ξ�; the amplitude F1 ¼
fαðρ̄ − ρcÞ=Re½ξ�g1=2 gives the particle density. However,
a linear stability analysis of Eq. (3) shows that for densities
slightly larger than ρc this oscillatory solution is linearly
unstable against finite wavelength perturbations in the
current and density fields. Preliminary numerical solutions
of the generalized GL equation [Eq. (3)] take the form of
rotating spots of high density that appear to show turbulent
dynamics [12,44]. This is qualitatively distinct from the
high-density bands found for straight-moving particles
[23,45] and the vortex field of a fluid coupled to torque
dipoles [46,47].
Far above the threshold, closure relations such as those

discussed above [31] may become invalid and with them
the ensuing hydrodynamic equations. Therefore, we pro-
ceed with the full spectral analysis of the Boltzmann
equation [Eq. (2)] as detailed in Supplemental Material
[12]. First, we numerically calculate the spatially homo-
geneous solutions for all angular Fourier modes fk below
some cutoff wave vector kmax. For given values of ρ̄ and σ
and a desired accuracy ε of this mode truncation scheme,
the cutoff is chosen such that jfkmaxþ1j < ε. We find that for
ρ̄ < ρcðσÞ a spatially homogeneous state where all modes
but f0 vanish is the only stable state. In contrast, above the
threshold [ρ̄ > ρcðσÞ], there is a second solution for which
jf1j > 0. It corresponds to a polar ordered state whose
orientation is changing periodically in time with frequency
v0κ0. For moderate ρ̄ − ρc, the amplitude quantitatively
agrees with the result from the generalized GL equation;
see Supplemental Material [12]. In a second step, we

consider wavelike perturbations, δfkðqÞ with wave vector
q, of the spatially homogeneous oscillatory solution in a
corotating frame. The largest real part of all eigenvalues of
the corresponding linearized system for δfk then yields the
linear growth rate SðqÞ [Fig. 3(b)]. In accordance with the
linear stability analysis of Eq. (3), we find that for densities
slightly larger than ρc a spatially homogeneous solution
is unstable against finite wavelength perturbations. The
dispersion relation SðqÞ exhibits a band of unstable modes,
with the maximal growth rate Smax decreasing as one moves
away from the threshold ρc [Figs. 3(a) and 3(b)]. Actually,
there is lobelike regime in parameter space where SðqÞ < 0
[Fig. 3(a)], and hence a homogeneously polar ordered state
with rotating direction is stable. We emphasize here that our
stability portrait [Fig. 3(a)] is independent of κ0 and hence
equally valid for systems of straight-moving particles. For
our two approaches [Figs. 2(d) and 3(a)], the onset to order
is governed by a similar trend [12], common for active
systems [28,48]: Disorder prevails for low density or high
noise, and order is promoted for high density or low noise.
To determine the spatiotemporal dynamics in the regime

where neither a spatially homogeneous state nor a homo-
geneously polar ordered state are stable, we resort to a
modified version of the SNAKE algorithm [34] to numeri-
cally solve Eq. (1). It accurately reproduces the threshold
value ρcðσÞ at which the spatially homogeneous state
becomes unstable [Fig. 3(c)]. Above the threshold
(ρ̄ > ρc), we find that local density fluctuations quickly
grow and evolve into stable swirls, i.e., disklike flocks of
high density and polar order moving on circular paths; see
Fig. 3(d) and Movie 6 in Supplemental Material [12]. The
radius of such a path is approximately given by R0. These
swirl patterns closely resemble the swirling flocks observed
in the Brownian dynamics simulations for short polymer
arc angles (Movie 5 [12]), as well as our preliminary
numerical solutions of the generalized GL equation
[Eq. (3)] [12,44]. Moreover, in accordance with the spectral
analysis, we find a second threshold density, above which
the system settles into a homogeneously polar ordered state
with a periodically changing orientation (Movie 7 [12]).
The amplitude and frequency of the polar order agree with
the numerical results of the spectral analysis to high
accuracy [12], while the numerically determined phase
boundaries differ. The SNAKE algorithm produces stable
swirl patterns only in a parameter regime where our linear
stability analysis yields significant growth rates. This is
mainly due to spurious noise caused by the discretization of
the angular variable, which tends to suppress inhomoge-
neities in the regime of small growth rates. Furthermore, the
finite system size constricts the band of possible modes and
allows only for patterns of sufficiently short length scales.
For active systems of circling particles that interact via

steric repulsion, our microscopic and mesoscopic treat-
ments strongly suggest that a phase of collective vortex
structures is a generic feature. Within this class, our work
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shows that extended polymers which as a whole follow
circular tracks can form closed rings. Concerning our
motivation of circling FtsZ, further research is needed to
elucidate the dynamics of treadmilling; yet our minimal
kinetic assumption suggests that varying the particle
density alone suffices to regulate the patterns as observed
by Loose and Mitchison [5]. Compared to systems of
straight-moving particles, we find qualitatively new phe-
nomena [12,44]. For those systems, it was already reported
that (globally achiral) vortices can occur due to collisions of
particles of asymmetric shape [49] or due to memory in
orientation [3,50]. Some of our findings, like the polymer
length dependence of patterns and the possible emergence
of active turbulence [51,52], pose interesting questions for
future work. Our analysis yields a mapping of the emergent
dynamics onto a generalized Ginzburg-Landau equation,
providing a connection between active matter and nonlinear
oscillators [44].
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