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We propose a universal nonlinear sigma model field theory for one-dimensional frustrated ferromagnets,
which applies in the vicinity of a “quantum Lifshitz point,” at which the ferromagnetic state develops a spin
wave instability. We investigate the phase diagram resulting from perturbations of the exchange and of
magnetic field away from the Lifshitz point, and uncover a rich structure with two distinct regimes of different
properties, depending upon the value of a marginal, dimensionless, parameter of the theory. In the regime
relevant for one-dimensional systems with low spin, we find a metamagnetic transition line to a vector chiral
phase. This line terminates in a critical end point, beyond which there is at least one multipolar or “spin
nematic” phase. We show that the field theory is asymptotically exactly soluble near the Lifshitz point.
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The study of order in all its variety anchors the field
of condensed matter physics. Some current goals at the
vanguard of this enterprise include characterizing “hidden”
orders, determining the mechanism behind “competing” or
“intertwined” orders, and understanding quantum phase
transitions between different orders. These problems arise
in diverse systems ranging from frustrated quantum mag-
nets to correlated electron materials like the cuprates.
Here we describe a unification of the three above

themes in a tangible context within quantum magnetism.
Specifically, we study a quantum Lifshitz transition
between a ferromagnet and a spiral magnet or quantum
paramagnet, which is realized, for example, in the well-
studied frustrated ferromagnetic Heisenberg chain (FFHC):

HFFHC ¼
X
n

½−Sn · Snþ1 þ βSn · Snþ2 − hSzn�: ð1Þ

With increasing frustration β, Eq. (1) has a Lifshitz point
at β ¼ 1=4, h ¼ 0. Numerical studies of the FFHC have
previously demonstrated that metamagnetism and a rich
sequence of multipolar phases—a type of hidden order
which does not appear in spin-spin correlation functions—
appear in the vicinity of this point for nonzero applied
magnetic field h. The simplest of these phases is the (spin)
angular momentum p ¼ 2 multipole, or quadrupolar state,
also known as a spin nematic, which breaks spin rotational
symmetry but preserves invariance with respect to time
reversal [1]. As such, the spin nematic is characterized
by an order parameter bilinear in the microscopic spins. It
can be understood as a state of bound, condensed pairs of
magnons [2–8]. The spin nematic has been sought exper-
imentally in a number of quasi-one-dimensional materials
which approximately realize the FFHC [9–16].
Theoretically, the proliferation of multipolar phases

with p ≥ 2 near the Lifshitz point in the FFHC is most

extraordinary, and begs theoretical explanation. We provide
a universal theory for the Lifshitz point, formulated as a
nonrelativistic nonlinear sigma model (NLSM) with
dynamic critical exponent z ¼ 4. An asymptotically exact
analytic solution of the Lifshitz NLSM produces the line of
the first-order metamagnetic transitions which terminate at
the metamagnetic end point, beyond which the transition
from the saturated state turns continuous. We demonstrate
that at least the p ¼ 2 nematic phase is described by the
NLSM, and speculate that higher multipoles may also be
captured in the same framework.
Lifshitz nonlinear sigma model.—Instead of focusing on

a specific microscopic model such as the FFHC in Eq. (1),
we introduce a universal quantum field theory description
which is based on translational symmetry and SU(2) spin-
rotation invariance. Since we are interested in continuous
transitions out of a ferromagnet, whose magnetization is
O(1) and quantized given SU(2) symmetry, we expect that
locally there is a (possibly fluctuating) magnetization, even
close to and on both sides of the quantum critical point.
Hence we propose that the low-energy properties of the
system are described by a nonlinear sigma model (NLSM)
formulated in terms of unit vector m̂ ¼ ðm̂1; m̂2; m̂3Þ which
describes magnetization density. The action is

S ¼
Z

dxdτfisAB½m̂� − δj∂xm̂j2 þ κj∂2
xm̂j2

þ λj∂xm̂j4 − hm̂3g: ð2Þ

Here s is the spin and AB is the Berry phase term
describing those spins. It can be written in various ways,
for example [17],

AB¼
Z

1

0

dum̂ ·∂τm̂×∂um̂¼ m̂1∂τm̂2−m̂2∂τm̂1

1þm̂3

; ð3Þ
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where we introduced a fictitious auxiliary coordinate u such
that m̂ðu ¼ 0Þ ¼ ẑ and m̂ðu ¼ 1Þ ¼ m̂ is the physical
value. The main important point is that AB contains a
single derivative with respect to imaginary time τ.
The action S contains all leading terms in gradients of m̂.

The parameter δ (∝ β − 1=4 in the FFHC) tunes the zero
field criticality: a trivial fully ordered ferromagnetic (FM)
state with constant m̂ and no fluctuations obtains for δ < 0,
while the system is nontrivial for δ > 0. The absence of
fluctuations for δ < 0 is due to the AB term, which makes
the dynamics completely different from the commonly
studied relativistic NLSMs. Further, note that there are two
terms, κ and λ, quartic in derivatives, which are crucial in
the following. The λ term has been ignored in previous field
theoretic approaches [18,19].
The action [Eq. (2)] needs a condition for stability

against large gradients of m̂. Starting from constraint
m̂ · m̂ ¼ 1, it is easy to obtain j∂2

xm̂j2 > j∂xm̂j4, which is
enough to show stability is present so long as λþ κ > 0.
This means negative λ in Eq. (2) is allowed so long
as λ > −κ.
The action describes several distinct dynamical regimes.

For δ < 0, the excitations above the ground states are
quadratically dispersing spin waves, ω ∼ kz, characterized
by the dynamical critical exponent z ¼ 2, which is easily
seen by equating the linear τ derivative in AB with the
second spatial derivative in the δ term. For δ ¼ 0, the
dynamics changes to z ¼ 4. For δ > 0, the theory is more
nontrivial, and there is even a z ¼ 1 regime (see below).
Asymptotic solubility.—Physically, the absence of

fluctuations in the FM state suggests a saddle point approxi-
mation may apply near to it. Indeed, a simple rescaling
x →

ffiffiffiffiffiffiffi
κ=δ

p
x0 and τ → κτ0=δ2 transforms the action into

suggestive form (we defined v ¼ −λ=κ and h0 ¼ hκ=δ2)

S ¼
ffiffiffi
κ

δ

r Z
dx0dτ0fisA0

B½m̂� − sgnðδÞj∂x0m̂j2 þ j∂2
x0m̂j2

− vj∂x0m̂j4 − h0m̂zg; ð4Þ

which shows that near the critical point, when δ=κ ≪ 1,
the action is large in dimensionless terms so that a saddle
point analysis becomes asymptotically correct on approach-
ing the Lifshitz point. Because jδj appears only in the
prefactor of the action in Eq. (4), the phase diagram at the
saddle point level and only the dimensionless parameters v
and h0 control the saddle point. Note that v < 1 defines the
stability region of the theory.
The saddle point of Eq. (2) with minimum action

describes a cone (umbrella) state:

m̂sp ¼
�
φ cos qx;φ sin qx;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ2

q �
; ð5Þ

with 0 ≤ φ ≤ 1 and q functions of the parameters of the
action. Solutions with both sign of q are degenerate, which

reflects spontaneous breaking of reflection symmetry
and chiral order: ẑ · m̂sp × ∂xm̂sp ¼ φ2q ≠ 0. For sufficient
large field, h > hc, the solution is simply the ferromagnetic
one, with φ ¼ 0. On reducing the field, there are two
possible behaviors. For λ > −κ=4 (v < 1=4), a continuous
transition occurs at the critical field hc ¼ h0 ¼ δ2=ð2κÞ.
The “order parameter” φ, which represents the local
moment transverse to the magnetic field, increases
smoothly from zero below h0. This corresponds to the
point of local instability of the FM phase to single
magnons, which Bose condensewhen their energy vanishes
at h0. For λ < −κ=4 (v > 1=4), the transition occurs
discontinuously at hc > h0, at which point the ferromag-
netic state is still locally stable. The order parameter jumps
to a nonzero value φc for h ¼ hc − 0þ. This is a meta-
magnetic transition, described by

φ2
c¼

2
ffiffiffi
v

p
−1

v
; hc¼

δ2

8κ
ffiffiffi
v

p ð1− ffiffiffi
v

p Þ; q
2
c¼

δ

4κð1− ffiffiffi
v

p Þ; ð6Þ

which hold for 1=4 < v < 1. Because of the aforemen-
tioned scale invariance, the metamagnetic line extends
for all δ at the saddle point level. The saddle point gives
direct predictions for experiment such as the magnetization
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ2

p
shown in Fig. 1.

Quantum corrections.—Fluctuations beyond the saddle
point have several types of effects. One innocuous effect is
that of phase fluctuations within the “cone phase”: con-
figurations of form of Eq. (5) with qx → qxþ θ have small
action when θðx; τÞ has small space-time gradients.
Fluctuations of θ are thereby described by a free z ¼ 1
boson theory with central charge c ¼ 1, which converts
the long-range cone order into power-law spin correlations,
but preserves the chiral order. These properties characterize
a “vector chiral” (VC) phase, identified previously in the
FFHC.

0.5 1 1.5

1

0

FIG. 1. Saddle point result for the magnetization mðhÞ for
different values of interaction parameter v, which is shown next to
each curve.
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Amore drastic effect of fluctuations is to move the phase
boundaries and even introduce new phases. We show below
that quantum fluctuations lower the energy difference
between the cone and FM states, eventually inducing a
metamagnetic end point. To proceed, we write the mag-
netization m̂ in the co-moving system of coordinates

m̂¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2−

η̄η

s

r �
η̄þ η

2
ffiffiffi
s

p ê1þ i
η̄− η

2
ffiffiffi
s

p ê2

�
þ
�
1−

η̄η

s

�
ê3; ð7Þ

where the rotating dreibein êjðxÞ are chosen as follows:
ê1 × ê2 ¼ ê3 ≡ m̂sp. The fields η̄, η describe magnons,
transverse fluctuations of the magnetization. To
quadratic order the action in Eq. (2) becomes S ¼R
dτ½R dxη̄∂τηþHfluct�, which shows that η̄, η are canoni-

cal Bose operators, andHflucðη̄; ηÞ is a Hamiltonian. Fourier
transforming it into momentum space shows that Hfluc
contains both normal and anomalous terms:

Hfluc ¼
X
k

2Akη̄kηk þ Bkðηkη−k þ η̄kη̄−kÞ: ð8Þ

Here coefficients Ak, Bk are functions of momentum k
and depend on parameters δ, κ, v, h, and φ of the saddle
point action. Diagonalization of Eq. (8) with the help
of a standard Bogoluiubov transformation gives us the
desired correction: the zero-point energy δEcone ¼
1
N

P
kf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
k − B2

k

q
− Akg.

We use this corrected energy to identify a metamagnetic
end point. A metamagnetic end point occurs at δ ¼ δc if,
for δ > δc, the cone state remains higher in energy than
the FM state for all h ≥ h0, while for δ < δc, the cone state
has lower energy than the FM one for some range of fields
h0 < h < hc. Hence the end point is determined by the
condition that the energy of the cone state equals that of the
FM state at h ¼ h0, i.e., ΔE ¼ ΔE − δEcone ¼ 0 at h ¼ h0
where the first term ΔE ¼ EFM − Econe represents the
saddle point energy difference, and the last is the
Bogoliubov correction.
Before analyzing this in detail, we note that from Eq. (4),

the fluctuation corrections to the energy are expected to be
reduced from the saddle point value by a factor of

ffiffiffiffiffiffiffi
δ=κ

p
,

which is assumed small for consistency of the approach.
Hence they can affect the balance between cone and FM
states only when the energy difference between the two is
already small at the saddle point level. Therefore we now
focus on the regime close to the onset of metamagnetism,
and let v ¼ 1=4þ ϵ in what follows, with ϵ ≪ 1. In this
limit, ΔEðh0Þ ¼ 256

27
κϵ3ðδ=κÞ2.

The fluctuation correction δEcone contains a regular
cutoff-dependent part and a singular universal term. The
former may be absorbed into a renormalized coupling
v → ~v and likewise ϵ. The latter represents a physically
distinct contribution to the cone state energy. For the
lattice FFHC it was obtained previously in [20]. We

obtain δEsing
cone ¼ s−1

R∞
−∞ðdk=2πÞð100δ3ϵ2=κ2k2 þ 2κδÞ ¼

ð25 ffiffiffi
2

p
=sÞκϵ2ðδ=κÞ5=2.

Now combining the saddle point and corrections, we find
that the total energy ΔE ¼ ΔEðh0Þ − δEsing

cone is seen to
change sign at δc ≈ 0.07κs2ϵ2, indeed indicating a meta-
magnetic end point, as shown in Fig. 2. Since δc ≪ 1 with
ϵ ≪ 1, this is within the regime of validity of the field
theory.
Quantum few-body physics.—Considering the above

result, we see that for δ > δc, the effective attraction
between magnons is too weak to induce collapse.
Nonetheless, here we argue that it still is strong enough
to produce bound states of a finite number of magnons,
which leads to distinct multipolar phases in a range
δc < δ < δc2, that set in at h > h0.
As we consider larger δ, the semiclassical analysis

becomes inadequate, and a full quantum treatment of the
action in Eq. (2) becomes necessary, which is daunting due
to its nonpolynomial nature (implicit in the NLSM con-
straint). In principle, by using Eq. (7) with êμ ¼ x̂μ, one can
expand and truncate the action to Oðη2nÞ for an exact
treatment of n-magnon states, since higher order terms, if
properly normal ordered, annihilate these states. This leads
to a quantum Hamiltonian for bosonic fields η̄, η with an
unconventional kinetic energy and up to n-body momen-
tum dependent interactions. Because of the complexity of
this problem, we have limited ourselves to the n ¼ 2 case.
This expansion yields

H ¼
X
k

ϵkη̄kηk

þ 1

2L

X
kpp0

Vðk; p; p0Þη̄k=2þpη̄k=2−pηk=2−p0ηk=2þp0 ; ð9Þ

FIG. 2. Stability curves (schematic). The thin dashed (blue) line
shows the critical hc field of the first order transition within the
classical saddle point approximation. The wide brushed (blue)
line indicates hc as modified by quantum fluctuations. It crosses
the thin (black) single-magnon instability field h0 at δ ¼ δc. The
red (green) solid lines denote the critical magnetic fields h2ðh3Þ
describing two- (three-) magnon condensation instabilities. The
h3ðδÞ curve is a conjecture.
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with ϵk¼ðhþ2κk4−2δk2Þ=s and Vðk;p;p0Þ in Ref. [21].
One can gain some insight by focusing on the minima of

ϵk, which occur at k ¼ �q, with q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ=ð2κÞp

. We there-
fore define new fields ψa;k ¼ ηð2a−3Þqþk for jkj ≪ q and
a ¼ 1, 2. Then, Fourier transforming back to real space,
one obtains, assuming all the scattered magnons remain
near the two minima,

H ¼
Z

dx

	X2
a¼1

ψ̄a

�
ϵ0 −

∂2
x

2m

�
ψa

þ 1

2
γ1½ðψ̄1ψ1Þ2 þ ðψ̄2ψ2Þ2� þ γ2ψ̄1ψ1ψ̄2ψ2



; ð10Þ

where ϵ0¼h=s−δ2=ð2κsÞ,m¼s=8δ, γ2¼δ2ð5−4vÞ=ðκs2Þ
and γ1 ¼ δ2ð1 − 4vÞ=ð2κs2Þ. Observe that for v > 1=4,
when the saddle point analysis found metamagnetism, the
intravalley interaction γ1 was negative, i.e., attractive. As is
well known, bosons with attractive delta-function potential,
such as described by the γ1 term in Eq. (10), undergo
collapse [20,22,23]—the ground state of the system is
given by the N-body bound state in which all N bosons of
the system participate. This collapse corresponds to the
metamagnetic transition. In reality an infinite collapse is
prevented by three-body interactions, and moreover the
saddle point condition is renormalized with increasing δ as
we found above, leading to the metamagnetic end point.
We can investigate renormalizations at the two-body

level from Eq. (9). In particular, taking the full dispersion
and momentum-dependent interactions, we solve the
two-body Schrödinger equation for the minimum energy
state. The general form for such a state is jψ ; ki ¼R ðdq=2πÞΨðq; kÞη̄k=2þqη̄k=2−qj0i, where j0i is the boson
vacuum, i.e., the ferromagnetic state, k is the (conserved)
center of mass momentum, and the two-magnon wave
function obeys

ðϵk=2þp þ ϵk=2−p − EÞΨðp; kÞ þ
Z

dp0

2π
Vðk; p; p0ÞΨðp0; kÞ

¼ 0: ð11Þ

This equation can be solved exactly [21]. We obtain the
minimum energy state for k ¼ �2q, which corresponds to a
pair of magnons from the same minima, and find the
binding energy ϵb ¼ 2ϵq − E given by the relation

ffiffiffiffiffi
ϵb

p
≈

ffiffiffiffiffiffi
ϵb0

p �
1 −

�
δ

δc2

�
1=2

�
þOðδ5=2Þ; ð12Þ

where ϵb0 ¼ ϵ2δ3=ð8κ2s3Þ is just the naive binding energy
one would obtain from the delta-function interaction
model, ϵb0 ¼ mγ21=4, and the term in the brackets repre-
sents the leading correction. This defines a critical value

δc2 ¼ 128
625

κs2ϵ2 ≈ 0.2κs2ϵ2, such that the two-magnon
bound state disappears for δ > δc2.
Importantly, we note that δc2 > δc, which implies that in

this interval the ferromagnetic state is unstable to two-
magnon condensation for a nonzero range of fields h > h0.
In principle, we should now check for bound states of more
than two magnons. Unfortunately, we have not been
technically able to accomplish this. We speculate that in
the range δc < δ < δc2, bound states of increasing numbers
of magnons appear with decreasing δ, at thresholds δc;n,
with δc < δc;n < δc;n0 for n > n0 [24]. This would imply a
sequence of distinct multipolar phases just below saturation
in this intermediate range of δ, as shown schematically in
Fig. 3. Note that the defining feature of the nth multipolar
phase is the presence of a gap for excitations with spin
Sz < n. In one dimension, due to fluctuations, there is no
true multipolar condensate, and each phase evolves
smoothly from more condensatelike to spin-density-
wave-like on reducing field [6,25]. The presence of states
with n > 2 is, as we indicated, speculative, and the physics
governing the maximum n is an interesting open problem.
Microscopic calculation of v.—The crucial

dimensionless parameter v of the theory cannot be deter-
mined within our field theory approach. We found two
ways to fix its value by comparing field theory predictions
with those of complementary microscopic calculations
[21]. In the first, large spin s ≫ 1 calculation, we use
the standard spin wave technique to calculate the leading
spin wave corrections to the ground state energy and the
optimal spiral wave vector of the spin-s J1 − J2 chain.
Comparing these results with the saddle point analysis,
we find v ¼ 3=ð2sÞ. Hence v < 1=4 for large s, and
thus metamagnetism occurs only for spin chains with

FIG. 3. Schematic phase diagram in the δ-h plane. The dashed
line is the metamagnetic transition emerging from the Lifshitz
point at the origin. “FM” and “cone/VC” denote the fully
polarized ferromagnetic and cone/vector chiral phases, respec-
tively. Integers n ¼ 2, 3, 4, 5 label multipolar phases comprised
of the corresponding number of bound magnons. Phases with
n > 2 are conjectural, and their appearance and number in the
universal regime is an open question.
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s < sc ¼ 6, in agreement with earlier Bethe-Salpeter cal-
culations [26,27].
For the s ¼ 1=2 chain, we match the value of the order

parameter jump φc, Eq. (6), at the metamagnetic transition
to the corresponding value of the magnetization mc ¼
ð ffiffiffi

7
p

− 1Þ=3 reported in Ref. [20]. This gives, via
m2

c ¼ 1 − φ2
c, that vs¼1=2 ¼ 1=ð1þmcÞ2 ≈ 0.42. Given

that 1=4 < vs¼1=2 < 1, our theory indeed predicts meta-
magnetism and multipolar phases for the FFHC, in agree-
ment with numerical observations [7].
Generalizations and outlook.—The nonlinear sigma

model formulation can be easily extended to higher-dimen-
sional Lifshitz points. This may provide a means to
understand other frustrated ferromagnets and ferrimagnets,
including possibly the kagome lattice material volborthite
[28,29], which shows signs of nematiclike behavior below
an unusually wide 1=3 magnetization plateau.

We would like to thank A. Furusaki for detailed
discussions of magnon binding. We also thank A.
Chubukov, T. Momoi, Z. Hiroi, and M. Takigawa for
insightful discussions. Our work is supported by the NSF
under Grant No. DMR1506119 (L. B.) and DMR1507054
(O. A. S.). This research benefitted from the facility of the
KITP, supported by NSF Grant No. PHY11-25915.

[1] A. F. Andreev and I. A. Grishchuk, JETP 60, 267 (1984).
[2] A. V. Chubukov, Phys. Rev. B 44, 4693 (1991).
[3] N. Shannon, T. Momoi, and P. Sindzingre, Phys. Rev. Lett.

96, 027213 (2006).
[4] F. Heidrich-Meisner, A. Honecker, and T. Vekua, Phys. Rev.

B 74, 020403 (2006).
[5] L. Kecke, T. Momoi, and A. Furusaki, Phys. Rev. B 76,

060407 (2007).
[6] T. Hikihara, L. Kecke, T. Momoi, and A. Furusaki, Phys.

Rev. B 78, 144404 (2008).
[7] J. Sudan, A. Lüscher, and A. M. Läuchli, Phys. Rev. B 80,

140402 (2009).
[8] M. E. Zhitomirsky and H. Tsunetsugu, Europhys. Lett. 92,

37001 (2010).
[9] L. Svistov, T. Fujita, H. Yamaguchi, S. Kimura, K. Omura,

A. Prokofiev, A. Smirnov, Z. Honda, and M. Hagiwara,
JETP Lett. 93, 21 (2011).

[10] T. Masuda, M. Hagihala, Y. Kondoh, K. Kaneko, and N.
Metoki, J. Phys. Soc. Jpn. 80, 113705 (2011).

[11] M. Mourigal, M. Enderle, B. Fåk, R. K. Kremer, J. M. Law,
A. Schneidewind, A. Hiess, and A. Prokofiev, Phys. Rev.
Lett. 109, 027203 (2012).

[12] K. Nawa, M. Takigawa, M. Yoshida, and K. Yoshimura,
J. Phys. Soc. Jpn. 82, 094709 (2013).

[13] K. Nawa, Y. Okamoto, A. Matsuo, K. Kindo, Y. Kitahara, S.
Yoshida, S. Ikeda, S. Hara, T. Sakurai, S. Okubo, H. Ohta,
and Z. Hiroi, J. Phys. Soc. Jpn. 83, 103702 (2014).

[14] L. A. Prozorova, S. S. Sosin, L. E. Svistov, N. Büttgen, J. B.
Kemper, A. P. Reyes, S. Riggs, A. Prokofiev, and O. A.
Petrenko, Phys. Rev. B 91, 174410 (2015).

[15] B. Willenberg, M. Schäpers, A. U. B. Wolter, S.-L. Drechs-
ler, M. Reehuis, J.-U. Hoffmann, B. Büchner, A. J. Studer,
K. C. Rule, B. Ouladdiaf, S. Süllow, and S. Nishimoto,
Phys. Rev. Lett. 116, 047202 (2016).

[16] M. Pregelj, A. Zorko, O. Zaharko, H. Nojiri, H. Berger,
L. C. Chapon, and D. Arcon, Nat. Commun. 6, 7255
(2015).

[17] B. Schlittgen and U.-J. Wiese, Phys. Rev. D 63, 085007
(2001).

[18] A. K. Kolezhuk, Prog. Theor. Phys. Suppl. 145, 29 (2002).
[19] J. Sirker, V. Y. Krivnov, D. V. Dmitriev, A. Herzog, O.

Janson, S. Nishimoto, S.-L. Drechsler, and J. Richter, Phys.
Rev. B 84, 144403 (2011).

[20] V. Y. Krivnov and A. A. Ovchinnikov, Phys. Rev. B 53,
6435 (1996).

[21] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.116.177201 for techni-
cal details.

[22] F. Calogero and A. Degasperis, Phys. Rev. A 11, 265
(1975).

[23] A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Phys.
Rep. 194, 117 (1990).

[24] Note that strictly speaking the actual metamagnetic end point
δ�c is determined by the crossing of the renormalized first-
order transition field hc with hnmax

, the field of the maximum-
possible nmax-complex condensation. Fig. 2 shows that δc
provides an upper bound on δ�c .

[25] O. A. Starykh and L. Balents, Phys. Rev. B 89, 104407
(2014).

[26] M. Arlego, F. Heidrich-Meisner, A. Honecker, G. Rossini,
and T. Vekua, Phys. Rev. B 84, 224409 (2011).

[27] A. K. Kolezhuk, F. Heidrich-Meisner, S. Greschner, and T.
Vekua, Phys. Rev. B 85, 064420 (2012).

[28] H. Ishikawa, M. Yoshida, K. Nawa, M. Jeong, S. Krämer,
M. Horvatić, C. Berthier, M. Takigawa, M. Akaki, A.
Miyake, M. Tokunaga, K. Kindo, J. Yamaura, Y. Okamoto,
and Z. Hiroi, Phys. Rev. Lett. 114, 227202 (2015).

[29] O. Janson, S. Furukawa, T. Momoi, P. Sindzingre, J.
Richter, and K. Held, arXiv:1509.07333.

PRL 116, 177201 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

29 APRIL 2016

177201-5

http://dx.doi.org/10.1103/PhysRevB.44.4693
http://dx.doi.org/10.1103/PhysRevLett.96.027213
http://dx.doi.org/10.1103/PhysRevLett.96.027213
http://dx.doi.org/10.1103/PhysRevB.74.020403
http://dx.doi.org/10.1103/PhysRevB.74.020403
http://dx.doi.org/10.1103/PhysRevB.76.060407
http://dx.doi.org/10.1103/PhysRevB.76.060407
http://dx.doi.org/10.1103/PhysRevB.78.144404
http://dx.doi.org/10.1103/PhysRevB.78.144404
http://dx.doi.org/10.1103/PhysRevB.80.140402
http://dx.doi.org/10.1103/PhysRevB.80.140402
http://dx.doi.org/10.1209/0295-5075/92/37001
http://dx.doi.org/10.1209/0295-5075/92/37001
http://dx.doi.org/10.1134/S0021364011010073
http://dx.doi.org/10.1143/JPSJ.80.113705
http://dx.doi.org/10.1103/PhysRevLett.109.027203
http://dx.doi.org/10.1103/PhysRevLett.109.027203
http://dx.doi.org/10.7566/JPSJ.82.094709
http://dx.doi.org/10.7566/JPSJ.83.103702
http://dx.doi.org/10.1103/PhysRevB.91.174410
http://dx.doi.org/10.1103/PhysRevLett.116.047202
http://dx.doi.org/10.1038/ncomms8255
http://dx.doi.org/10.1038/ncomms8255
http://dx.doi.org/10.1103/PhysRevD.63.085007
http://dx.doi.org/10.1103/PhysRevD.63.085007
http://dx.doi.org/10.1143/PTPS.145.29
http://dx.doi.org/10.1103/PhysRevB.84.144403
http://dx.doi.org/10.1103/PhysRevB.84.144403
http://dx.doi.org/10.1103/PhysRevB.53.6435
http://dx.doi.org/10.1103/PhysRevB.53.6435
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.177201
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.177201
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.177201
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.177201
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.177201
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.177201
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.177201
http://dx.doi.org/10.1103/PhysRevA.11.265
http://dx.doi.org/10.1103/PhysRevA.11.265
http://dx.doi.org/10.1016/0370-1573(90)90130-T
http://dx.doi.org/10.1016/0370-1573(90)90130-T
http://dx.doi.org/10.1103/PhysRevB.89.104407
http://dx.doi.org/10.1103/PhysRevB.89.104407
http://dx.doi.org/10.1103/PhysRevB.84.224409
http://dx.doi.org/10.1103/PhysRevB.85.064420
http://dx.doi.org/10.1103/PhysRevLett.114.227202
http://arXiv.org/abs/1509.07333

