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We theoretically consider the superconductivity of the topological half-Heusler semimetals YPtBi and
LuPtBi. We show that pairing occurs between j = 3/2 fermion states, which leads to qualitative differences
from the conventional theory of pairing between j = 1/2 states. In particular, this permits Cooper pairs
with quintet or septet total angular momentum, in addition to the usual singlet and triplet states. Purely
on-site interactions can generate s-wave quintet time-reversal symmetry-breaking states with topologically
nontrivial point or line nodes. These local s-wave quintet pairs reveal themselves as d-wave states in
momentum space. Furthermore, due to the broken inversion symmetry in these materials, the s-wave
singlet state can mix with a p-wave septet state, again with topologically stable line nodes. Our analysis
lays the foundation for understanding the unconventional superconductivity of the half-Heuslers.
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The concept of topological order is now firmly estab-
lished as a key characteristic of condensed matter systems.
Although fundamentally different from spontaneous sym-
metry-breaking order, there is much interest in whether a
nontrivial relationship between the two exists. A materials
class in which to systematically explore this interplay are
the ternary half-Heusler compounds, in particular RPtBi
and RPdBi, where R is a rare earth. Many of these systems
are predicted to show an inversion between the p-orbital-
derived j = 3/2 I'g and the s-orbital-derived j = 1/2 T'g
bands [1], a precondition for a topological insulator state.
These half-Heuslers also display symmetry-broken ground
states: Most are either antiferromagnetic [2,3] or super-
conducting [4-7], or show a coexistence of the two [3,8,9].
Excitingly, there is now compelling evidence that the
superconductivity of YPtBi is unconventional: Upper
critical field measurements are inconsistent with singlet
pairing [10], while the low-temperature penetration depth
indicates the presence of line nodes [11]. A surface nodal
superconducting state in LuPtBi with a T, significantly
higher than in the bulk has also been reported [12].

The band inversion predicted for YPtBi and LuPtBi
implies a fundamental difference from most other super-
conductors: In these materials, the chemical potential lies
close to the fourfold degeneracy point of the I'g band, and a
microscopic theory of the superconductivity must therefore
describe the pairing between j = 3/2 fermions. This is
highly unusual, since the fourfold degeneracy is typically
split by crystal fields and spin-orbit interactions to the
twofold degeneracy dictated by parity and time-reversal
symmetries, yielding the conventional pseudospin-1/2
description of Cooper pairing.
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In this Letter we investigate the possible superconduct-
ing states of YPtBi and LuPtBi. Our starting point is a
generic k - p model for the low-energy states of the I'g
band, which qualitatively captures the ab initio band
structure. Although both symmetric (SSOC) and antisym-
metric spin-orbit coupling (ASOC) lift the fourfold degen-
eracy away from the I' point, the electronic states
nevertheless maintain their j = 3/2 character. This has
important consequences for the superconductivity. In par-
ticular, there are six distinct on-site pairing states: one
corresponds to the conventional J = 0 singlet solution,
while the other five are J = 2 quintet states. Pairing in the
latter channels generically leads to nodal time-reversal
symmetry-breaking (TRSB) states but strongly depends
upon the SSOC. Because of the absence of centrosymme-
try, the on-site singlet solution can mix with a p-wave
J = 3 septet state, potentially yielding a nodal gap which is
insensitive to the pair-breaking effect of the ASOC. The
essential role of spin-orbit coupling in selecting the pairing
state has been overlooked in previous works [13], which
examined pairing in j = 3/2 bands in the context of
realizing topological surface states. Such considerations
also do not arise in the pairing of spin-3/2 particles in cold
atomic gases [14]. Our work therefore lays the foundation
for understanding the superconductivity of topological
half-Heusler compounds.

Generic k -p model for half-Heusler semimetals.—
Band structure calculations for YPtBi and LuPtBi indicate
that the electronic states near the chemical potential arise
from the j =3/2 I'y representation, where the j = 3/2
total angular momentum is due to the spin-orbit coupling of
spin s = 1/2 electrons in [ = 1 p-orbitals of Bi. In Fig. 1
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FIG. 1. Comparison of MBJLDA and LDA results for the I'g

band of YPtBi along high symmetry directions close to the I'
point. The dotted line indicates the Fermi energy and a is the
lattice constant.

we compare ab initio predictions for the 'y band in YPtBi.
We note that the band structure calculated using different
exchange correlation potentials differ to some degree
[1,15]. In particular, whereas the local-density approxima-
tion (LDA) predicts a compensated semimetal, the modi-
fied Becke and Johnson potential (MBJLDA) yields a zero
band-gap semiconductor. The two schemes are in much
better agreement for LuPtBi [15]. Further details of the
ab initio calculations, including hybrid HSEO6 functional
results confirming the band inversion, are given in the
Supplemental Material [15]. In either case it is possible to
model the band structure near the I" point with a k- p
theory. Such a theory was originally discussed by
Dresselhaus [17]; up to quadratic order in k the single-
particle Hamiltonian is

i 7

+5Zki(ji+1jiji+1 ~Jir2diJi12) (1)

where i = x,y,z and i+ 1 =y if i = x, etc., and ]vi are
4 x 4 matrices corresponding to the angular momentum
operators for j = 3/2. The first line of Eq. (1) is the
Luttinger-Kohn model, which is invariant under inversion
and involves SSOC terms proportional to f and y. The
second line is odd under inversion and generalizes
the ASOC discussed in the context of j = 1/2 noncen-
trosymmetric superconductors [21]. Although this model

|

qualitatively captures the predicted band structure, it is
necessary to include higher-order terms in the k-:p
expansion to achieve quantitative agreement [15]. Since
including these additional terms does not alter our con-
clusions about the superconductivity, but significantly
complicates the analysis, we neglect them in the following.

Even with this simplification, it is not generally possible
to analytically diagonalize the Hamiltonian (1). For our
study of the superconductivity, however, we only require an
effective low-energy model valid close to the Fermi surface.
We obtain this by treating the ASOC as a perturbation of
the Luttinger-Kohn bands, which is justified when the
characteristic ASOC energy ~0k. is small compared to the
chemical potential measured from the fourfold degeneracy
point. Experiments showing a low density of hole carriers
[5,10], and the predicted very weak ASOC splitting, are
consistent with this condition.

The eigenstates of the Luttinger-Kohn model are doubly
degenerate and can be labeled by pseudospin-1/2 indices.
The dispersions are given by

5
€+ = <a + Zﬂ> k|?
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We now include the ASOC as a first-order perturbation by
projecting the ASOC into the pseudospin basis for each
band. We hence obtain two effective pseudospin-1/2
Hamiltonians

Heg s = ,PiuTHu,P;t = ex 150 + Sk.+ - S (3)

where P projects into the pseudospin states of the € 4
bands (2), U is the unitary operator that diagonalizes H
with the ASOC set to zero, and § ,, are the Pauli matrices for
the pseudospin. The vector g, ; = —g_ . represents the
effective ASOC in the pseudospin-1/2 basis of the band
€k +- While the orientation of g .. depends on the arbitrary
choice of pseudospin basis, the magnitude of gy . is
independent of this choice and can be written

4% Ziklzklz+l
£ : (4)

2 _ 29
|gk,i| 16

Note that along the (1,1,1) direction this becomes
|k +|* = 36%k*[1 + sgn(y/p)], which is vanishing in one
band but nonzero in the other. In the usual j = 1/2 case,
however, symmetry dictates that the ASOC must vanish

2 2
95> (Zz[(l + %)k?(k@ + kzz+2) + (% - 2>k12k12+1k12+2] n

2
Sk + G = )RR, ] VK + CE = 1)k,

l

along this direction [21]; the spin-orbit splitting of one of
the bands therefore reflects the presence of j = 3/2 physics
even in our effective pseudospin-1/2 description. The
effective Hamiltonians (3) can be readily diagonalized
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FIG. 2. (a) Comparison of exact and approximate small-ASOC
dispersions along high symmetry directions. (b) Cutaway of spin-
orbit-split holelike Fermi surfaces for y = —20 meV. In all
figures we take the parameters of the k - p Hamiltonian (1) to
be a =20(a/x)* eV, f=—15(a/x)* eV, y = —10(a/7)* eV,
and 6 = 0.1(a/x) eV.

and yield the dispersions Ey, ., , = €x, + Vg,
where the values of # and v are independent of one another.
As shown in Fig. 2(a), this approximate dispersion is in
excellent agreement with the full numerical solution of the
k - p Hamiltonian, and yields typical spin-orbit split hole-
like Fermi surfaces plotted in Fig. 2(b).

Superconductivity.—In the conventional theory of super-
conductivity, a Cooper pair constructed from two j = 1/2
fermions has either total angular momentum J = 0 (singlet)
or J =1 (triplet), which by fermion antisymmetry corre-
spond to even- and odd-parity orbital states, respectively.
For the pairing of the j = 3/2 states in the half-Heuslers,
however, we must additionally allow for J =2 (quintet)
and J = 3 (septet) pairing, again corresponding to even-
and odd-parity orbital wave functions. These extra pairing
channels already manifest themselves in an expanded
variety of on-site (s-wave) pairing: While there is a single
J = 0 state, there are five distinct types of on-site Cooper
pair with J = 2. The six local Cooper pair operators b;; =
Zm,mrl“fn ' Cm.iCn i are defined and classified according to
the tetrahedral point group symmetry in Table I.

In terms of these basis functions, the on-site pairing
interaction will have the form H;, = > ,V,b; ;b ; with one
potential V; for each tetrahedral representation. Treating

TABLE 1. On-site Cooper pair operators for j = 3/2 pairing.
The first column gives the representation of 7'y, the second shows
the form of the local Cooper pair operator (with site index
suppressed), and the last column gives the total angular momen-
tum state.

Representation Cooper Pair J
Ay €3/2C_3/2 — C1/2C_1)2 singlet
E €3/2C_3/2 + C1j2C_1)2 quintet
C3/2C1/2 —+ C_1/2C_3/2 quintet
T2 C3/2C_1/2 =+ C1/2C_3/2 quintet
—i(c3pac 12 = €1pc3p) quintet
—i(c3p2C1 = C_12¢_3)2) quintet

this within a usual mean-field theory yields a pairing term
of the form

3/2
Hyie =Y Y {8jpcl el +He)  (5)
kK jj=-3/2

It is instructive to project the A; ; into the pseudospin basis
of the € . bands, A1 (K) = P UTAU*P. In all cases
the even parity of the pairing yields a pseudospin-singlet
gap. Neglecting higher-order corrections, for on-site
Cooper pairs in representation A;, we find

A PN
Ao = A8y, (6)
for on-site £ Cooper pairs we find

U122 32 - K
Afff,iziém : D +mV3kE-K)

4 \/ﬁzzz'k? + 3y = )2 ikiki,

where 1 = (17,,1,) is a two-component order parameter,
and for on-site 7, Cooper pairs we find

3 Lk, + bk, + Lkk
Agf},i:i\/_y ke T o T B0 35,

2 \/ﬁzZikﬁ‘ + (372 - ﬂ2)2ik1‘2k%+l

(8)

which is characterized by the three-component order
parameter I = (I, [, I3). The effective gaps of the quintet
pairing states have d-wave form factors, which reflects the
J =2 total angular momentum of the Cooper pairs. The
d-wave symmetry is therefore a robust result, and does not
depend on the specific parameters of our k - p Hamiltonian.
Before discussing each of these cases in detail, we note an
important property of the E and T, states: The effective
gaps, and therefore T .., depend strongly on the SSOC terms
in Eq. (1). Specifically, the effective gap for the E states is
vanishing unless f # 0, while the 7', states only open a gap
at the Fermi surface if y # 0. Consequently, a spatial
variation of the spin-orbit coupling (as might appear near
surfaces or interfaces) can dramatically change T, for these
solutions. We speculate that this may explain the enhanced
T, observed at the surface of LuPtBi [12].

The A, pairing state—The on-site pairing in the A;
channel corresponds to the conventional isotropic s-wave
singlet state. It is therefore interesting to consider the effect
of the broken inversion symmetry, which in j=1/2
noncentrosymmetric superconductors generates a mixed-
parity state with both singlet and triplet pairing [22]. For
T, symmetry, the lowest orbital-angular-momentum
A, triplet state is f-wave, which for small k gives gap
functions on the two spin-split j = 1/2 Fermi surfaces

A(k) = A, + Af\/zik?(kirl — k?.,)?. This state exhibits
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line nodes if the f-wave triplet gap A, is larger than the
s-wave singlet gap A;. However, dominant f-wave sym-
metry of the Cooper pairs is highly unlikely if quasilocal
interactions give rise to superconductivity [23]; such
interactions would more plausibly give rise to a p-wave
state. For the j = 3/2 case considered here, however, a
p-wave state with A; symmetry exists: In the basis

(Ck.32+ Ck.1/2: Ck —1/2- Ck —3/2) it has gap function

e Pk Fheo 0

Vi 3k 0 Y3
Ak)=a, 2 7 t 9)

\/T§k+ 0 _%k— \/T§kz

0 —?k_ ?kz _%kJr

where k, = k, & ik,. This constitutes a sepfet pairing
state with total J = 3. Projecting the gap into the
effective pseudospin-1/2 bands, we find that Ay, =
(dg 1 -8)is, = (A,/6)(gk+ - 8)i3,; ie., the d-vector of
the effective pseudospin-triplet state is parallel to the
effective ASOC vector gy ;. As pointed out in Ref. [22],
this alignment makes the gap A,y immune to the pair-
breaking effect of the ASOC; for sufficiently large ASOC,
it is the only stable odd-parity gap. Importantly, when
mixed with a subdominant s-wave singlet state, the result-
ing gap displays line nodes on one of the spin-split Fermi
surfaces, as shown in Fig. 3. These nodes are topologically
protected and lead to zero-energy flat band surface
states [24].

The E pairing state—The properties of the E super-
conducting state depends upon the two-dimensional order
parameter 7 = (171, 1,). The free energy expansion for the E
pairing state in point group 7', is the same as that for an E,
state in point group O, [25], from which we deduce
fe=an -0+ pi(n-0)* + po(mns —nom)?. In general
there are three ground states: n = (1,0), (0,1), and (1, i).
In the weak-coupling limit we find f#; = 3, > 0 indepen-
dent of the particular form of the gap basis functions or the
shape of the Fermi surface, ensuring that the TRSB state

BT Admax(|Ad)
-1 0.5 0 0.5 1

kyalrt 005

FIG. 3. Typical mixed singlet-septet A, pairing state with (a) a
nodal gap on the larger Fermi surface and (b) a full gap on the
smaller Fermi surface.

n = (1,i) is most stable. The effective gap, shown in
Fig. 4(a), has topologically protected Weyl point nodes
that generate arc surface states [24]. Although point nodes
at first seem inconsistent with the observation of line nodes,
it is possible that a point node state with impurities
resembles a clean line node state [26,27], and hence it
cannot be excluded as a possible pairing state in YPtBi.

The T, pairing state.—The gap function for 7', pairing is
controlled by the three-dimensional order parameter
1= (l,15,13). Similar to the E pairing state, the free
energy expansion for the 7', pairing in the 7', point group
is identical to that for 7, pairing in the point group
O, 251, e, fr,=ao -I'+pB(L-I")*+ Bl -1+
ﬁ3(|l] |2|lz|2 —+ |ll|2|l3|2 —+ |l3|2|lz|2). This admits four dis-
tinct ground states: I = (1,0,0), (1,1,1), (1, /3, &*/3),
or (1,i,0). Again assuming weak coupling, the parameters
in the free energy expansion satisfy f; > 0, , > 0, and
p3 = 2p, — f1, which implies that one of the two TRSB
states is realized. The particular state depends on the
detailed form of the gap basis functions and the shape
of the Fermi surface. We plot the corresponding effective
gaps in Figs. 4(b) and 4(c). Both these gaps have interesting
topological properties and surface states [24]. Given that
line nodes have been observed, the I = (1, ,0) solution is
of particular interest.

Conclusions.—In this Letter we have investigated pos-
sible pairing states of the unconventional noncentrosym-
metric superconductors YPtBi and LuPtBi. The inverted
band structures of these topological semimetals implies
pairing of j = 3/2 fermions, permitting Cooper pairs in a

2m
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=
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0 05 1
[Ar/max(|A])

FIG. 4. Time-reversal

symmetry-breaking quintet pairing
states: (a) the E pairing state; (b) the T, pairing state with
1= (1,i,0); (c) the T, pairing state with 1 = (1, —e?7/3, ¢*7i/3),
The color indicates the phase while the saturation gives the gap
magnitude. Black points or lines indicate nodes of the gap.
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quintet or septet total angular momentum state. On-site
quintet pairing generically leads to nodal TRSB super-
conducting states, which could be detected by magneto-
optical Kerr effect or uSR measurements. Alternatively, a
nodal time-reversal symmetric gap can arise from the
admixture of a p-wave septet state with an on-site singlet
state. Spin-orbit coupling strongly influences the stability
of these states. The similar electronic structure of the
topological half-Heusler compounds makes our analysis
relevant to the superconductivity of the entire materials
class. Although we have not considered a pairing mecha-
nism, the low carrier density makes a conventional
Eliashberg theory unlikely [28]. We note that pairing of
j =3/2 fermions is not necessarily limited to the half-
Heuslers: the fourfold degeneracy of the I'y bands also
occurs in materials with O, T, and O, point group
symmetries, permitting the exotic superconducting states
discussed here.
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