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Fractional Quantum Hall States in a Ge Quantum Well
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Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe/(001)Si
substrate in the quantum Hall regime are reported. We analyze the results in terms of thermally activated
quantum tunneling of carriers from one internal edge state to another across saddle points in the long-range
impurity potential. This shows that the gaps for different filling fractions closely follow the dependence
predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in
line with the expectations of an electrostatic model in the lowest spin-polarized Landau level (LL), but not
in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the

carriers required.
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The strongest fractional quantum states have been found in
delta-doped GaAs quantum wells and heterostructures. These
have been the cleanest samples with the highest mobilities,
and yet the strength of a fractional quantum Hall state does
not appear to be connected in a simple way with the zero
magnetic field mobility of the samples involved [1,2].

The strength of a quantum Hall state is associated with
how rapidly the dissipative conductance drops with temper-
ature. This is known to be affected by the long-range
impurity potential, arising out of the ionized donors in a
semiconductor heterostructure, although describing this
effect quantitatively has proved difficult. The background
potential leads to the formation of compressible regions,
which then partially screen the background potential.
Predicted theoretically in Refs. [3,4], and later verified
in scanning electron transistor measurements [5], these
compressible regions are separated from the percolating
incompressible region by internal edges. The transfer
between these internal edges is then the principal dissipa-
tive process at low temperatures [6,7]. Characterizing these
internal edges is not just an important challenge for
describing the quantum Hall response but also for the
interpretation of Aharonov-Bohm interference experiments
at filling factor v = 5/2 [8]. It turns out, for example, that it
is crucial to the interpretation of these experiments to know
whether any charge redistribution associated with changing
the field occurs internally (by shifts in the local occupation
of compressible regions) or by the outer sample edges [9].
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Here, we report conductivity measurements on a p-type
strained germanium quantum well. There is a clear family of
quantum Hall states in the composite fermion (CF) series
centered on v = 1/2 [10]. Our analysis of the data shows
that the model can give a consistent fit across all filling
fractions in the CF family for the gaps in these systems and
explains why the zero field mobility is not simply connected
with the strength of the quantized Hall states. The gaps are in
line with the predicted dependence on the filling fraction. In
addition, we estimate the typical separation at a saddle point
a of two compressible regions occupied by the same type of
carrier. As a function of the gap, these correlate well with the
separation of neighboring compressible regions containing
carriers of opposite charge, which can be predicted on the
basis of an electrostatic model [11]. While the dependence of
the width parameter a on the gap A is the same for filling
fractions in the lowest Landau level (LL) above and below
v = 1/2, there is a systematic shift to higher values for the
quasihole states (v > 1/2). However, for states above v > 1
where multiple LLs are occupied, the dependence does not
coincide with the predictions of the electrostatic model. We
attribute this to the need for a charge rearrangement across
the incompressible region, which is too large for a simple
edge to accommodate.

Our sample was grown by reduced pressure chemical
vapor deposition at the University of Warwick (sample 1D
11-289SQI1D). It is taken from the same wafer that was
reported in Ref. [12]; it has a density of 2.9 x 10'! cm™2
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FIG. 1. The Hall resistance p,, and dissipative response p,, at
55 mK (main figure) and the dissipative response at different
temperatures [14] in the high field regime (top left panel). The
wafer structure is summarized in the schematic (top right panel).

and a mobility of 1.3 x 10° cm?/V's (with current flow
along the [110] direction). The hole effective mass of
0.073(1)m,, measured from the temperature dependence of
the Shubnikov—de Haas oscillations at low field, is remark-
ably similar to that of electrons in GaAs (0.067m,) and
much lower than for holes in GaAs. The Dingle ratio is
78 +2 [13,14].

Figure 1 shows the structure of the wafer. A reverse
linear-graded, strain tuning buffer [15] terminating in over-
relaxed Sip,Gegg is followed by the Ge quantum well,
which is under 0.65% biaxial compressive strain. Holes are
supplied from a boron-doped layer that is set back 26 nm
above the quantum well. Magnetoresistance measurements
were performed at the National High Magnetic Field
Laboratory using static fields of up to 35 T and at
temperatures down to 26 mK. We note that results on a
similar sample grown in our laboratory have already been
reported [16] but without any discussion of the CF family
in the lowest Landau level.

Figure 1 shows field traces of the longitudinal resistance
taken in a 4 x 4-mm square geometry at four different
temperatures with the current along the [110] direction.
The Hall resistance was measured separately in a Hall bar
geometry. There are clear quantum Hall states at fractions
in the main CF sequence around v = 1/2 and v = 3/2. As
seen in CdTe [17], there is some deviation from simple

activated behavior even when there are good quantum Hall
states. Around v = 5/2, we find a minimum on p,, but no
clear plateau at v = 5/2. The mobility of our sample is high
for a Ge sample, but it is still significantly less than for GaAs
samples showing such clear FQH states. For example, in a
p-doped GaAs sample, with 4 = 2.3 x 10° cm?/V s (close
to twice that of our sample), there are precursor signals of
statesaty = 3/5 and atv = 4/7 but not quantized Hall states
[18]. In n-doped GaAs, no sign of the v = 5/2 state is visible
for 4 < 6.7 x 10 cm?/V's [1,2].

While the zero field mobility reflects all scattering, we
assume that it is the long-range potential of the ionized
donors that controls the dissipation in quantum Hall states.
Any short-range scattering centers, not located directly in
the saddle points of the long-range impurity potential,
will not affect the response of the quantum Hall state. This
makes it clear why mobility is unlikely to be a good
indicator of strong quantum Hall states [1].

We have analyzed the data using the model developed in
Refs. [7,19], assuming that localized regions or puddles of
compressible regions are nucleated within the incompress-
ible quantum Hall fluid. The dissipative response is
controlled by excitations, localized in one puddle, crossing
to another via a saddle point in the impurity potential (see
Fig. 2). The saddle points act as effective resistors, and the
puddles of quasiparticles (QP) and quasiholes (QH) act as
reservoirs in a resistor network [6]. The response is then
that of the average saddle point (with barrier height
A;/2) [20,21].

If the energy required to create a QP-QH pair near a saddle
point is A, the average barrier height to traverse a saddle
point is A,/2 for both QPs (E;,) and QHs (Ej;). In the
absence of tunneling through the saddle point, the dissipa-
tive conductance per square is [2(ge)?/hle=%/*T as pre-
dicted by Polyakov and Shklovskii [6]. Taking into account
tunneling gives a dissipative conductance per square

2

0_» (ge)
Gxx h

F[As.a/ly]. (1)
where a is the typical saddle point width (see Fig. 2) and [, is
the magnetic length for QPs/QHs with fractional charge ge
[7,14,22]. We fit the data to the computed form for F using
the gap A, and the width parameter a as free parameters.

We convert the measured minimum values of p,, at each
filling fraction and for each temperature to equivalent
conductivities o,, (the Hall resistance is taken as the
corresponding quantized value). The results for v = 7/5
are shown in Fig. 2. We also show the results of the more
traditional method of assuming the Arrhenius form, draw-
ing a tangent to the curves at the inflection point and
identifying the gradient with an energy gap A,.

The aspect ratio (width/length) of the active region of the
sample gives an overall additive constant to Ino,, [14]. We
use this as a consistency check on the model, as it should
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FIG. 2. Band alignment and particle flow across a typical
saddle point in the potential (top left panel). The blue (red)
regions are compressible with nucleated QPs (QHs), while the
white region is incompressible. Dissipation occurs when excita-
tions move across a saddle point from a compressible region with
chemical potential y,; to a compressible region at u,. The transfer
proceeds by thermally activated tunneling across the energy
barrier, which on average is A,/2. The resulting logarithmic
conductance [with ¢ in units of 2(ge?)/h] at different filling
fractions is shown in the top right panel and below. For the
v =17/5 and v = 8/5 states, the theoretical prediction and model
parameters used to describe the data are shown (the data at
v = 8/5 have all been raised by 0.1 for clarity).

not vary significantly between filling fractions. For the
states at v = 2/3,2/5,3/5,3/7, and 4/7, the data in Fig. 2
are fitted assuming a constant aspect ratio of 1.8. At filling
fractions with small gaps, we can expect that the effective
width of the percolating incompressible region may reduce
as the state is weaker. At v =4/9 and v = 5/9, the aspect
ratio is reduced to 1.4 and 1.5, respectively. However, we
should emphasize that at these filling fractions the states are
weak (the ratio between low and high temperature con-
ductance is less than 1.9).

In Fig. 3 we compare the results for A with the predicted
dependence on the magnetic field for the composite
fermion model [23]. For spin-polarized states at filling
fraction v, = p/(2p+1), 1 £v, or 2-v,, the theory
predicts that the gap in a homogeneous system A, varies as

A — C &2
"TRp+1(In2p + 1]+ C)ely

(2)
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FIG. 3. Estimates of the gap as a function of magnetic field.

The crosses denote the estimate of the gap at each v, A;. The
ovals show the energies A; estimated from the gradients in the
Arrhenius plots taken at the point of inflection for each v (see
Fig. 2). The solid lines are the dependence predicted in CF theory
[23] with C' = 2 and C = 0.25 [see Eq. (2)]. The straight dashed
lines are best linear fits. Inset: Results close to v = 3/2 on an
expanded scale.

where C and C’ are dimensionless constants and [, is the
magnetic length. Analysis of the logarithmic divergences as
p — oo for a homogeneous system with zero width and
without LL-mixing corrections suggested C = 1.27 [23],
while comparison with exact diagonalization studies put
C' = 3.0 and, later, C' = 4.11 [24]. We have treated C and
C’ as free parameters and compared with the values we
obtain for A;. The results are shown as solid lines in Fig. 3
with C = 0.25 and C' = 2.

The agreement between CF theory and the estimated
gaps A; is good even at filling fractions above v = 1. The
values of the constants C and C’ are different from those
estimated for the homogeneous zero width case and
indicate a larger role for the logarithmic corrections to
the CF effective mass. The result (2) can be rewritten as a
formula for the effective mass via

!
m*(p)—h2<@>ln|2p+l|+c. 3)
e C
As expected, the effective mass depends on the magnetic
length—it varies between 0.69 m, at v = 5/3 and 1.09 m,
at v = 2/3 (both have p = —2) and on p. Our results also
suggest that the dependence of the effective mass on p is
stronger than predicted for the homogeneous 2DEG
(C' =2 instead of 4.1 suggested by diagonalizations of
the Hamiltonian of homogeneous systems [24]).
Although there is no microscopic model giving the typical
saddle point width a as a function of A, we assume that it
should be related to b, the width of the incompressible region
between two puddles (see upper left panel in Fig. 2). We
estimate b using the theory developed for edges, which
computes the electrostatic potential induced by fixing the
charge density at the incompressible value [11]. The width b
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FIG. 4. (a) The saddle point width parameter a plotted against
/A,/q (in units of K'/?), for the different CF families (left).
Dashed lines are guides to the eye. (b) I' = A, — A, for different
filling fractions. I" reflects the reduction in the apparent gap due to
tunneling and has traditionally been assumed to be independent
of the filling factor.

is determined by setting the energy to create a QP-QH pair
equal to the electrostatic energy gained by transferring a QP
from the low to the high density side of the incompressible
region. This gives b*> = {[8e(e/q)A]/[gndn/dx|,]}, where
dn/dx|, is the gradient of the carrier density at the center of
the incompressible strip if the system was fully screening the
background impurity potential.

In Fig. 4(a) we show a as a function of /A, /g, where the
A, are values from fits to the data. For the two families 197 =
p/(2p +1)and 9" =1 — p/(2p + 1), we see that a linear
dependence on /A, /g works quite well. There is evidence
of a systematic difference between the QP family and the QH
family, with the width in the QH case slightly larger than in
the QP case. A difference between the two cases is not
surprising, given that the boundary of a compressible puddle
is an internal edge and the fractionally charged QP/QH is an
internal edge excitation. As the model does not factor in any
details of the edge state reconstruction, a small systematic
difference between the results for the two families
[v=p/2p+1landv=1- p/(2p + 1)]istobeexpected.

In the case of the partially occupied reverse spin LL
(RSLL), Fig. 4(a) shows that a does not follow the simple
CSG scaling [11]. The scaling assumes that the compressible
regions behave like perfect metals, i.e., that the screening
length in the puddles is short enough for the electrostatic
model to be a good approximation. This turns out to be
unlikely in the RSLL in our sample. The theory would require
that the screening electron density changes between edges
of an incompressible strip by An ~ bdn/dx|,.. At filling
fraction v = 1+ p/(p + 1), the corresponding change in
number density of QPs, with charge ge = e¢/(2p + 1), is
Angp = An/q. The average density of electrons in the
RSLL is n; = np/(3p + 1). This gives

Angp _An(2p+1)(3p+1)

ny n P

: (4)

For uncorrelated ionized donors, the typical density
gradient would be dn/dx|. ~ \/n/8x/d? [4], which would

give (Angp/n;)~02 at v=4/3 (p=1) and 0.3 at
8/5 (p = 2). These would be large density variations in a
LL and would take the system close to (or into) neighbor-
ing CF states [in the CF model, a ratio 1/(p + 1) defines
the next CF state in the hierarchy]. The assumption of
fully screening metallic regions, which is implicit in the
CSG model, applies to this sample at filling fractions
above v = 1.

Our model is not consistent with an approach that
assumes a v-independent broadening due to impurities.
The difference, ' = A; — A;, between the intrinsic gap and
the slope measured in Arrhenius plots of the dissipative
conductance depends on the strength of the incompressible
state. Figure 4(b) shows the broadening parameter I
which, according to our model, varies between 2.5 K at
v =17/5 and around 0.6 K at v = 2/3. The smaller I is, the
larger the intrinsic gap. On the other hand, the dashed lines
in Fig. 3(a) show that, if we fit A; by a linear function of
B —B(v=1/2) [10], we obtain different values for the
broadening and effective masses: 4.5 K and 0.65m, for
v<1/2,and 3.1 K and 1.1m, for v > 1/2. We conclude
that estimates of intrinsic gaps using states of significantly
different strengths on the basis of a v-independent broad-
ening parameter are likely to be unreliable (see
also Ref. [25]).

We have reported measurements of the dissipative
response and the Hall response of a Ge quantum well
in the fractional quantum Hall regime. The results across
all filling fractions, for which FQH states are found, fit
well with the predictions of a model of thermally assisted
quantum tunneling. The model demonstrates that the
properties of the internal edge states around puddles
control how a fractional quantum Hall state responds to
any slowly varying background potential. Our sample has
a high mobility for Ge but still significantly below that
for GaAs samples (both p and n type); however, it shows
much stronger quantum Hall states than would be
expected given the mobility. Our model makes it clear
why the mobility is not likely to be a reliable measure of
the sample in the quantum Hall regime. The strength of
the quantum Hall state is determined by the strength
of the long-range impurity potential at saddle points in
the potential.
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