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By numerical simulations and analytical studies, we show that the phenomenon of microwave-induced
resistance oscillations can be understood as a classical memory effect caused by recollisions of electrons
with scattering centers after a cyclotron period. We develop a Drude-like approach to magnetotransport in
the presence of a microwave field, taking into account memory effects, and find an excellent agreement
between numerical and analytical results, as well as a qualitative agreement with experiment.

DOI: 10.1103/PhysRevLett.116.176801

Nearly 20 years ago Zudov, Du, Simmons, and Reno [1]
and later Mani et al. [2,3] experimentally discovered huge
microwave-induced resistance oscillations (MIRO) in high-
mobility two-dimensional electron gas at low temperatures
and moderate magnetic fields. This spectacular phenome-
non with many very unusual features has attracted a lot of
interest. A detailed review of experimental results and
theoretical approaches is presented by Dmitriev et al. [4].
Starting with the pioneering works [5,6] which predicted

oscillatory photoconductivity long before its experimental
observations, the mainstream theories describe MIRO as a
quantum phenomenon [4] and deal with quantum transi-
tions between Landau levels in crossed electric and
magnetic fields in the presence of electron scattering by
different types of disorder.
In this Letter we demonstrate that the so-called

“displacement” mechanism of MIRO can be understood
as a classical memory effect caused by recollisions of
electrons with scattering centers after one or more cyclotron
periods. We propose a simple Drude-like equation taking
into account such memory effects.
The idea that memory effects due to recollisions are

important for understanding MIRO was previously put
forward byVavilov andAleiner [7]. They derived a quantum
kinetic equation including such effects and considered
quantum interference of scattering amplitudes, using the
self-consistent Born approximation and the Keldysh tech-
nique. Our purely classical approach is much more trans-
parent, although based on a similar physical picture.
In strong enough magnetic fields, memory effects are

known to result in classical localization when the resistivity
ρxx is zero [8] or exponentially small [9]. At low magnetic
fields the magnetoresistance can be either positive [10]
(soft scatterers) or negative (hard scatterers) [11]. Here we
consider a regime which is far from localization.
We start with presenting the results of our numerical

experiment, based entirely on Newton mechanics (Fig. 1),
which reproduces quite well the typical experimental
results for MIRO, notably the absolute negative resistance
in Fig. 1(d).

Weuse the following input parameters. Sample size:200×
200 μm2; impurity concentration: N ¼ 1.1 × 108 cm−2;
Fermi energy: EF ¼ 8.6 meV; effective mass: m ¼
0.067me; ac field amplitude: E1 ¼ 2 V=cm; ac frequency:
ω ¼ 2π × 50 GHz; and dc electric field: E0 ¼ 0.02 V=cm.
These parameters fairly well correspond to the typical
experimental conditions.
We choose the impurity potential as VðrÞ ¼ V0½1 −

ðr=r0Þ2�5=2 for r < r0 and VðrÞ ¼ 0 for r > r0, with
V0 ¼ 0.6EF and r0 ¼ 55 nm. The exact form of VðrÞ is
not really important.
Each point in Fig. 1 was obtained by averaging over

5 × 108 electron trajectories with random initial conditions.
Interactions between electrons was neglected.
The initial velocities have the zero-temperature Fermi

distribution which does not noticeably change during the

(e)

(d)(a)

(b)
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FIG. 1. Numerical simulation of classical electron magneto-
transport in presence of a circularly polarized microwave radi-
ation. Left panel: randomly distributed scattering centers and
typical trajectories without (a), (b), and with recollisions (c).
Right panel: (d) numerically calculated resistivity, ρxx, as a
function of magnetic field, with and without microwaves,
(e) calculated MIRO resistivity, δρxx, as function of the ratio
ω=ωc. Dashed line—theory, see Eq. (17).
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numerical experiment. The resistivity was defined as
ρxx ¼ σxx=ðσ2xx þ σ2xyÞ, where the conductivity tensor σ̂
was evaluated by calculating the average electron flow
caused by the dc electric field E0. We have checked that the
conductivity tensor calculated numerically at low magnetic
field and in the absence of microwaves coincides with the
predictions following from the Boltzmann equation for the
chosen form of the scattering potential. The technical
details of the simulation procedure will be presented
elsewhere.
Electron trajectories were calculated on a PC by the

velocity Verlet algorithm adapted for problems involving
magnetic field [12] with a variable time step. A graphics
processing unit (GPU) was used to increase the perfor-
mance [13]. It takes about 2 hours to calculate each point in
Fig. 1 with a Nvidia GPU (GTX 560 model).
MIRO-like oscillations were previously obtained

numerically in Ref. [14] for a model involving multiple
recollisions with hard disks and a special source of noise.
In the absence of electric fields, the impact parameter and

scattering angle during recollisions remans the same
(Fig. 2). The crucial role of external fields is to introduce
a mismatch, Δ, of trajectories after each cycle [7]. This
mismatch consists of two parts: Δ ¼ Δ0 þ Δ1 due to the
actions of the dc and ac electric fields, E0 and E1ðtÞ:

Δ0 ¼ 2π
e
m
E0 × ωc

ω3
c

; Δ1ðtÞ ¼
e
m
E1ðtÞ − E1ðt − TÞ

ωðω − ωcÞ
;

ð1Þ

where e and m are effective mass, ωc ¼ eB=mc, T ¼
2π=ωc is the cyclotron period. The ac field E1ðtÞ, is
assumed to be circularly polarized in the sense of cyclotron
rotation [15].
We now introduce our Drude-like approach accounting

for the memory effects related to recollisions and resulting
in a simple equation for the average electron velocity.
Collisions of the type presented in Fig. 2 can be

considered as extended collisions. The external fields, E0

and E1ðtÞ, act on the electron during such extended
collisions.
Memory effects are mathematically described by equa-

tions that are nonlocal in time. Thus, to account for returns,
the collision integral in the kinetic equation for the
distribution function fðv; tÞ should include [1] terms
containing this function at earlier times, fðv; t − nTÞ, with
non-negative integer values of n [16].
Here, we descend to the level of the Drude equation for

the average electron velocity vðtÞ. Within this approach, the
conventional relaxation term −vðtÞ=τtr (τtr is the transport
relaxation time), describing the change of velocity at time t
due to collisions, must be modified to contain the velocities
at previous times t − nT.
Figure 2 (drawn for n ¼ 1) shows that the average of

velocity change during a collision at time t, δv ¼ vðfÞðtÞ−
vðiÞðtÞ, is proportional to the average velocity at time
t − nT. These considerations lead to our main result, the
following Drude-like equation, accounting for memory
effects caused by extended collisions:

_vðtÞ¼ωc×vðtÞ− e
m
E− ð1−pÞ

X∞
n¼0

pnΓ̂ðnÞvðt−nTÞ; ð2Þ

where E ¼ E0 þ E1ðtÞ is the total electric field, the sum is
over the number of recollisions n (so that n ¼ 0 corre-

sponds to a simple collision, and Γð0Þ
ij ¼ δij=τtr), p is the

probability for the electron to make a full circle unper-
turbed by collisions, and it is also the fraction of electrons
that rotate in free space and do not contribute to
conductivity.
The conventional expression for the probability p is [4]

p ¼ expð−2π=ωcτqÞ, where τq is the so-called quantum
lifetime [17]. For our model, 1=τq ¼ 2r0NvF.

The tensor Γ̂ðnÞ in Eq. (2) describes the rate of velocity
changes due to extended collisions with n returns. It is time
dependent and generally depends on all the mismatches
occurring in each of n cycles.
Equations (1), (2) describe the memory effects in the

dark magnetoresistance and the ac conductivity, as well as
the microwave-induced oscillations of ρxx and ρxy. They
also describe effects that are nonlinear in microwave power
and/or the dc field E0 [18,19].
Dark magnetoresistance.—In the absence of the ac field,

the linear in E0 magnetotransport is described by the

stationary solution of Eq. (2) with ΓðnÞ
ij ¼ γnδij:

FIG. 2. Extended double collision. At time t − T the electron
hits the scattering center with an impact parameter ρ1 and velocity
vðiÞðt − TÞ, which is changed to vðfÞðt − TÞ after scattering. In the
absence of external fields (dashed line), after completing the
cyclotron circle the impact parameter remains to be ρ1, while
the velocity becomes vðiÞðtÞ. The action of dc and ac electric
fields during the cyclotron period produces a mismatch Δ, which
results in changing the new impact parameter to ρ2. After the
second scattering, the velocity becomes vðfÞðtÞ.
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ωc × v −
e
m
E0 − γv ¼ 0; γ ¼ ð1 − pÞ

X∞
n¼0

pnγn: ð3Þ

Thus the magnetoresistance is given by the formula

ρxxðBÞ=ρxxð0Þ ¼ γτtr: ð4Þ
The parameters γn can be readily evaluated, since in the

absence of external fields the impact parameter ρ remains
the same during an arbitrary number of recollisions:

γn ¼ NvF

Z
½cosðnθÞ − cosððnþ 1ÞθÞ�σðθÞdθ; ð5Þ

where σðθÞ is the differential scattering cross section. Note
that γ0 ¼ 1=τtr. Equations (4), (5) give the ρxxðBÞ depend-
ence indistinguishable from the corresponding result of
simulations in Fig. 1(c) (the “MW off” curve). For p ≪ 1
and small angle scattering, when γ1 ¼ 3γ0, Eq. (4) coin-
cides with the corresponding result in Ref. [7] obtained by a
quantum approach.
Microwave-induced resistance oscillations.—For n ≥ 1,

the tensor Γ̂ðnÞ in Eq. (2) oscillates in time due tomismatches
caused by the microwave field. To solve Eq. (2), we look for
a solution in the form vðtÞ ¼ v þ v1ðtÞ, where v is the
constant part, and v1ðtÞ is the oscillating part induced by the
ac field E1ðtÞ:

v1ðtÞ ¼
e
m

ωc × E1ðtÞ
ωcðω − ωcÞ

: ð6Þ

Inserting this result into the last termof Eq. (2) and averaging
over the period of the microwave field, we obtain the
following equation for the steady-state velocity v:

ωc × v − ðγ þ ~̂ΓÞv − e
m
ðE0 þ ~EÞ ¼ 0; ð7Þ

where the microwave-induced relaxation tensor ~Γij and the

effective electric field ~E are given by

e
m

~E ¼ ð1 − pÞ
X∞
n¼1

pnhΓ̂ðnÞv1ðt − nTÞi; ð8Þ

~Γij ¼ ð1 − pÞ
X∞
n¼1

pnðhΓðnÞ
ij i − δijγnÞ: ð9Þ

Here, the angular brackets denote averaging over the period
of the ac field. Thus the action ofmicrowave radiation during
extended collisions (i) modifies the relaxation term and
(ii) produces an effective dc electric field, ~E.
The relaxation tensor ~Γij and effective field ~E are both

oscillating functions of the ratio ω=ωc and proportional to
the power of microwave radiation. They also depend on the
polarization of the microwave field E1ðtÞ. For circular
polarization the tensor ~Γij is diagonal: ~Γij ¼ δij ~γ.
The number of terms that substantially contribute to the

sums in Eqs. (2), (8), (9) depends on the value of the

probability p. We will assume that p ≪ 1. Consequently, in
the following we will take into account single recollisions
only (n ¼ 1) [20].

The general form of the tensor Γð1Þ
ij , depending on the

vector Δ, is

Γð1Þ
ij − γ1δij ¼ αΔ2δij þ βΔiΔj; ð10Þ

where α and β are functions of Δ2, Δ ¼ Δ0 þ Δ1ðtÞ is given
by Eq. (1). To the lowest order in Δ the coefficients α and β
are constants that will be calculated below.
With field ~E being proportional to the dc electric field

E0, its components can be generally presented as

~E ¼ ϰ∥E0 þ ϰ⊥
E0 × ωc

ωc
; ð11Þ

We solve Eq. (7) with ~Γij ¼ δij ~γ to find the corrections
δρxx and δρxy to the longitudinal and Hall resistances
respectively. Keeping only terms that are linear in ϰ∥, ϰ⊥,
and ~γ, we obtain

δρxx=ρ
ð0Þ
xx ¼ ð~γ þ ωcϰ⊥Þτtr; δρxy=ρ

ð0Þ
xy ¼ −ϰ∥; ð12Þ

where ρð0Þxx and ρð0Þxy are the conventional components of the
resistivity tensor in the absence of microwaves.
While the corrections δρxx and δρxy are of the same order

of magnitude, the microwave-induced correction δρxx
might be comparable to, or even greater than ρð0Þxx . The
correction to the Hall resistance is always relatively small.
With the help of Eqs. (8)–(11) we can now determine the

coefficients ϰ⊥, ϰ∥, ~γ, which define the microwave-induced

corrections to ρð0Þxx and ρð0Þxy according to Eq. (12):

ϰ⊥ ¼ Ppr20
2αþ 3β

ωc

πω

ωc
sin

2πω

ωc
; ð13Þ

ϰ∥ ¼ Ppr20
2β − 4α

ωc

πω

ωc
sin2

πω

ωc
; ð14Þ

~γ ¼ Ppr20ð4αþ 2βÞsin2 πω
ωc

; ð15Þ

where P is the dimensionless microwave power:

P ¼
�
eE1

m

�
2 1

ω2ðω − ωcÞ2r20
: ð16Þ

Finally, the microwave-induced resistivity is given by

δρxx

ρð0Þxx

¼ −P exp

�
−

2π

ωcτq

��
C1

πω

ωc
sin

2πω

ωc
þC2sin2

πω

ωc

�
;

C1 ¼ −r20τtrð2αþ 3βÞ; C2 ¼ −r20τtrð4αþ 2βÞ: ð17Þ
Calculation of α and β (see below) for the chosen form of
the impurity potential VðrÞ gives C1 ¼ 29.5, C2 ¼ 27.0.
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The resulting curve for δρxx as a function of ω=ωc is
presented by the dashed line in Fig. 1(e), showing a very
good agreement with simulations, especially for ω=ωc > 2.
The small deviations at higher magnetic field are due to the
neglected terms in Eqs. (8), (9) with n > 1 and also to a
small nonlinearity in the microwave power.
Up to numerical factors which depend on the exact form

of the potential VðrÞ, Eq. (17) is similar to corresponding
results in Refs. [4,7], obtained by using quantum formal-
ism. In Ref. [7], where scattering by a random potential was
considered, our r0 in Eq. (16) is replaced by the correlation
radius ξ of the scattering potential. Thus their Eq. (6.11),
like our Eq. (17), does not contain the Planck constant ℏ,
which is a clear indication that the MIRO effect calculated
in Ref. [7] is, in fact, classical.
On the other hand, Eqs. (72-74, 84) in Ref. [4] coincide

with our Eq. (17) with C1 ¼ C2 if the scatterer radius r0 is
replaced by the de Broglie wavelength λ, which seems
reasonable for the case when λ ≫ r0 [21].
Evaluation of the parameters of an extended collision.—

We briefly outline the way to determine the parameters α
and β in Eq. (10).
During the first collision with an impact parameter ρ1,

the initial velocity vðiÞðt − TÞ rotates by an angle θ1 ¼
θðρ1Þ and becomes vðfÞðt − TÞ. After completing the
cyclotron circle, the electron hits the scatterer for the
second time with the velocity vðiÞðtÞ ¼ vðfÞðt − TÞ.
Because of the mismatch Δ, the new impact parameter,

ρ2, will differ from ρ1 by the projection of the vector Δ on
the direction perpendicular to vðiÞðtÞ: ρ2 ¼ ρ1 þ Δρ.
During the second collision, the velocity rotates by the

angle θ2 ¼ θðρ1 þ ΔρÞ and becomes vðfÞðtÞ. The velocity
change δvðtÞ ¼ vðfÞðtÞ − vðiÞðtÞ of each electron depends
on its initial impact parameter ρ1 and velocity vðiÞðt − TÞ.
Considering Δ to be small, we expand δv to the second
order in Δρ. Finally, we integrate δvðtÞ over the initial
impact parameter ρ1 and take the average over the dis-
tribution of the initial electron velocities, which is charac-
terized by the average initial velocity vðt − TÞ.
This procedure can be done both analytically and

numerically, by simulating a single extended collision with
n ¼ 1. Analytically, this results in Eq. (10) where γ1 is
given by Eq. (5), the parameters α and β are given by

α ¼ −NvF

Z
1 − 4sin2θ

8
(θ0ðρÞ)2dρ; ð18Þ

β ¼ −NvF

Z
1

4
(θ0ðρÞ)2dρ: ð19Þ

In the case of small angle scattering when θ ≪ 1, we have
β ¼ 2α and C1 ¼ C2. Also, γ1 ¼ 3γ0.
Numerical simulation allows the calculation of α and β in

the general case of arbitrary Δ, when the coefficients α and
β in Eq. (10) become functions of Δ2. Figure 3(a) presents

the results for the coefficients C1 and C2 in Eq. (17) as
functions of Δ=r0. The physical reason for the reduction of
the contribution of recollisions with n ¼ 1 is that for large
microwave power, when Δ=r0 ≳ 1, the electron can miss
the second impact with the impurity.
Nonlinear effects.—We extend our numerical simula-

tions to study MIRO at elevated microwave power.
The results in Fig. 3(c) (obtained for a microwave

power 10 times greater than that in Fig. 1) qualitatively
reproduce the main features observed experimentally; see
e.g. Ref. [22]. At high magnetic field, Fig. 3(c) shows
oscillations at fractional values of ω=ωc, also observed
experimentally [23,24].
Since we are considering effects that are linear in the dc

electric field, jΔ0j ≪ jΔ1j and Δ2 ≈ Δ2
1. As seen from

Eq. (1), Δ2
1 is time independent (this property exists for

circular polarization only) and is an oscillating function of
ω=ωc, equal to zero for integer values of this ratio
[Fig. 3(b)].
Thus, the n ¼ 1 contribution to MIRO is suppressed

between integer values of ω=ωc, which pushes the extrema
to integer values. For ω=ωc ≳ 2, we obtain a good agree-
ment between numerical experiment and the prediction of
Eq. (17), shown by the dashed line in Fig. 3(c), if the values
of the coefficients C1 and C2 are taken from Figs. 3(a) and
3(b).
In summary, we have demonstrated thatMIRO and related

phenomena can beverywell understood as classical memory
effects caused by the action of the ac and dc fields during
extended collisions, at least for some types of disorder. (This
applies to the displacement mechanism. In contrast, the
“inelastic” mechanism [4], not considered here, strongly
relies on Landau quantization and thus is truly quantum.)We
have proposed a classical Drude-like equation, Eq. (2), in

(a) (b)

(c)

FIG. 3. MIRO for high microwave power. (a) Dependencies
of C1 and C2 in Eq. (17) on Δ=r0, showing the role of
increasing microwave power, (b) dependence of Δ1=r0 on the
frequency ratio for E1 ¼ 2 V=cm (corresponding to Fig. 1) and to
E1 ¼ 6.3 V=cm. (c) Numerically simulated MIRO for
E1 ¼ 6.3 V=cm, dashed line—calculation using Eq. (17) and
the results in (a) and (b).
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which the relaxation term is modified to take account of an
arbitrary number of recollisions. To our knowledge, such an
approach has never been used previously.
We have verified that the analytical results on MIRO,

obtained by solving Eq. (2), perfectly agree with the results
of corresponding numerical Newton dynamics simulations
(and also qualitatively agree with experiment).
It turns out that extended collisions in the presence of

external dc and ac electric fields are characterized not only
by the transport cross section, but also by additional
parameters (our α and β) that cannot be expressed through
the differential cross section.
Apart fromminor differences, most of our physical results

were previously obtained in many papers devoted to the
displacement mechanism by laborious quantum calculations
employing advanced theoretical techniques [4]. It appears,
that such theories, in fact, translate into quantum language
the classical physics contained in Eq. (2). Indeed, in many
cases the final results do not contain the Planck constant
ℏ [25].
The situation is reminiscent of the conventional Drude

approach to magnetotransport, which works quite well
unless truly quantum phenomena, like e. g. Shubnikov–de
Haas oscillations or weak localization, are involved.
However, the only parameter in the Drude equation, τtr
is expressed through the scattering cross section, the
calculation of which may, or may not, require quantum
mechanics, depending on the relation between the de
Broglie wavelength λ and scatterer radius r0.
Similarly, our generalization of the Drude equation

accounting for extended collisions is likely to be valid
whatever the relation is between λ and r0. We have
evaluated the parameters of collision with one return using
classical mechanics (λ ≪ r0). In the opposite case, the
calculation of α and β should be done quantum mechan-
ically. Since α and β are not expressed through the
differential cross section, the problem of their quantum-
mechanical evaluation remains open.
In any case, the isolated problem of finding the para-

meters of extended collisions with a given mismatch Δ is
complementary to the classical Eq. (2).
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