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We investigate the reflection of gravity-capillary surface waves by a plane vertical barrier. The size of the
meniscus is found to strongly affect reflection: the energy of the reflected wave with a pinned contact line is
around twice the one corresponding to a fully developed meniscus. To perform these measurements, a new
experimental setup similar to an acousto-optic modulator is developed and offers a simple way to measure
the amplitude, frequency and direction of propagation of surface waves.
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Introduction.—Within its range of applicability, acous-
tics offer simple, robust and low-cost methods for perform-
ing quantitative measurements. In addition to velocimetry,
the phase modulation of a harmonic signal caused by a
reflection on a moving boundary can be used to track a
vibrating surface with a subwavelength resolution.
Motionless but corrugated surfaces can also be character-
ized: after the pioneer work of Rayleigh, this topic received
much attention at the beginning of the 20th century, one
application being the diffusion of sound at the sea surface
or at the bottom of the ocean (see, for instance, the work of
Eckart [1] or the review [2]). The study of surface waves
with acoustics combines these two effects, spatially peri-
odic deformation acting as a diffraction grating and its
motion inducing a Doppler shift equal to a multiple of the
frequency of the wave [3]. Apart from [3], that simply
evidences this Doppler shift, it has remained a curiosity and
has never been used as a measuring tool of surface waves.
In contrast, an analogous effect occurs in optics when light
propagates in a medium sustaining strong ultrasonic waves
and is the basis of devices commonly used to shift the
frequency of a laser and known as acousto-optic modu-
lators or “Bragg cells.” This analogy led us to develop a
setup able to measure both the directions and amplitudes of
surface waves, whose description and test are reported in
the first part of this Letter.
The effect of wetting on damping of surface waves is an

old but still very active topic. Theoretical studies have been
carried out in a circular cylinder with several wetting
boundary conditions [4–6] and are in agreement with
experiments, especially in the nonwetting case ([7,8],
and references therein). The case of damping by a pinned
contact line at a nonzero height has never been investigated
and is the object of the experiment described in the second
part of this Letter. This is of particular interest since it
provides a way to continuously change the edge condition
from a pinned-end to an almost free-end. The ability to
compare the amplitudes of counterpropagating waves with
only a couple of piezoelectric transducers offers a great

simplification to the measurement of reflection coefficients.
We are then able to measure its evolution in the case of
gravity-capillary waves reflecting on a plane vertical barrier
whose elevation is experimentally controlled from
submersion to above the liquid level. This experiment
demonstrates that maximal energy reflection coefficients
are obtained with a pinned contact line at the level of
the unperturbed liquid and can be as much as twice the
reflection coefficient corresponding to a fully developed
meniscus. It provides a method for studying how this
coefficient depends on the amplitude and direction of the
wave or on the properties of the barrier.
Surface waves measurement using acoustics.—Consider

the situation sketched in Fig. 1 where an acoustic wave is
sent with normal incidence on a perturbed water surface.
The surface wave is assumed unidirectional, and the
deformation of the free surface is denoted by ξðx; tÞ.
The wave number and angular frequency of the incident
acoustic wave are k0 and ω0, and the insonified area is Σ.

FIG. 1. Experimental setup for the measurement of surface
waves. P stands for piezoelectric transducer.

PRL 116, 174301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

29 APRIL 2016

0031-9007=16=116(17)=174301(4) 174301-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.116.174301
http://dx.doi.org/10.1103/PhysRevLett.116.174301
http://dx.doi.org/10.1103/PhysRevLett.116.174301
http://dx.doi.org/10.1103/PhysRevLett.116.174301


The far field description of the scattered acoustic wave in
the θ direction is then characterized by the Fraunhofer
diffraction integral

Z
Σ
eik0ξðx;tÞ½1þcosðθÞ� × eik0x sinðθÞdx; ð1Þ

where the first exponential term is the transmission func-
tion. In the case of ξðx; tÞ being a propagative or standing
wave and apart from the geometrical correction 1þ cosðθÞ,
this integral has been worked out by Raman and Nath
[9,10] in their study of the first acousto-optic modulators
made by Debye [11] and Lucas [12]. In order to use these
results, we shall stay in the limit k0ξ ≪ 1 in which (1)
becomes linear in ξ. Up to the first order in this parameter
and taking into account the correction 1þ cosðθÞ, the
results of [9,10] for a propagative surface wave ξðx; tÞ ¼
ξ0 cosðωwt� kwxÞ can be summed up as follows: (1) Two
diffracted beams centered on directions given by sinðθÞ ¼
�kw=k0 are observed. (2) Their relative intensity, compared
to the one of the backscattered components, is
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(3) The beam diffracted in the direction of propagation of
the surface wave has an angular frequency ω0 þ ωw.
(4) The beam diffracted in the opposite direction has an
angular frequency ω0 − ωw.
In this linear regime, the scattered signal received by the

measurement transducer in Fig. 1 is then a sum of harmonic
signals whose amplitudes and frequencies are directly
related to the ones of the water waves, and whose
Doppler shift signs can distinguish between counterpropa-
gating waves.
The following setup is used to test these results: a basin

of dimension 648 × 846 × 160 mm is filled with water, an
oblique plate being fixed at one extremity to limit reflec-
tions of water waves. At the other side, a Brüel and Kjær
4810 shaker drives a vertical plate sinusoidally at an
angular frequency ωw ¼ 2πfw. Piezoelectric transducers
resonant at f0 ¼ 41 500 Hz (ω0 ¼ 2πf0) emit and receive
at θ ¼ 45.2° the acoustic signal, then processed by a HP
35670A spectrum analyzer. A position sensing detector
tracks the motion amplitude of a laser beam after its
reflection on the surface: this part of the setup, not shown
in Fig. 1, is used to measure the amplitude of propagative
water waves when no reflection is observed.
Propagative gravity-capillary waves of frequency

fw ¼ 15 Hz, corresponding to kw ≃ 400 m−1, are gener-
ated, no noticeable reflected waves being observed. All this
study is done in the limit of small k0ξ and kwξ, in order to
stay in the linear regime for both acoustic scattering and
water wave propagation. The received scattered spectra
reported in Fig. 2 consist of one component at f0 caused by

multiple reflections and a second one, Doppler shifted, at
f0 − fw. The amplitude of this latter component is found
linear in ξ0, see Fig. 3. It is also checked (figures not
reported here for brevity) that reversing the direction of the
propagative waves changes the sign of the Doppler shift,
and that the acoustic amplitude spectra are linear in ξðx; tÞ.
These results are in agreement with items 2 to 4 of the

above list. In this experiment, some signal is received
even if arcsinðkw=k0Þ≃ 32° ≠ θ, showing that the angular
diffraction window is wide, i.e., that a large range of water
wave frequencies can be detected without changing the
angle of the receiver. As for usual diffraction gratings, this
window is expected to become smaller as the insonified
area increases. We also note that the Doppler shift is a key
factor in this experiment, making scattering distinguishable
from specular reflections. Both this background noise
and the angular window make the details of (2) irrelevant:
from an experimental point of view, it reduces to

FIG. 2. Acoustic spectra for different surface wave amplitudes:
only one Doppler shifted component is present. If k0ξ is not small
compared to 1, other harmonics can be observed.

FIG. 3. Linear growth of the Doppler-shifted component with
the amplitude of the surface waves.
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IðθÞ ¼ αðθ; kwÞξ20, where the calibration function αðθ; kwÞ
has to be measured or removed by comparing two counter-
propagating waves as is done in the next section.
Meniscus damping.—The previous setup is slightly

changed to measure reflection coefficients of gravity-
capillary waves: a vertical barrier consisting of a
2.9 mm-thick dural plate of width 8 cm is fixed 30 cm
away from the wave maker. Its height h can be set and
measured with a 0.1 mm precision. The top matches the
unperturbed water level if h ¼ 0 (see Fig. 4).
In the steady-state, two counterpropagating water waves

of frequency fw cross the insonified area: (i) one of
amplitude ξ0 going toward the barrier, leading to a received
acoustic signal of frequency f0 − fw and intensity
αðθ; kwÞξ20. (ii) Another of amplitude Rtotξ0 moving away
from the barrier, Rtot standing for a total reflection
coefficient. The scattered acoustical signal received by
the piezoelectric transducer is of frequency f0 þ fw and
intensity αðθ; kwÞðRtotξ0Þ2. The coefficient R2

tot can then be
easily measured with a spectrum analyzer by dividing the
power spectral density at f0 þ fw by the one at f0 − fw.
Typical spectra are displayed in Fig. 5, showing a strong
dependence of Rtot on h. Given that the wavelength of the
incident surface wave (2π=kw ≃ 1.6 cm) is small compared
to the width of the plate and the depth of water, this
experiment models the reflection of gravity-capillary waves
on an infinite vertical barrier in deep water. In all these
experiments, ξ0 is maintained small compared to the
wavelength of the acoustic wave (k0ξ0 ≪ 1) and of
the water wave (kwξ0 ≪ 1): Rtot is found independent of
the water wave steepness kwξ0 in the explored ranged (kwξ0
up to 0.05). In this linear propagation regime, the total
reflection coefficient Rtot writes

RtotðhÞ2 ¼ DðhÞ2 × RðhÞ2; ð3Þ

where DðhÞ stands for the linear damping during the
propagation and RðhÞ2 for the energy reflection coefficient
at the barrier. The dependence of DðhÞ on h, resulting from
the variation of the free-surface area of the meniscus, will be
considered as weak and neglected. Moreover, the possible
contamination of the interface by surface-active agents
makes DðhÞ difficult to deduce from theory. Therefore,
we consider a parameter describing only reflection

�
RtotðhÞ
Rtotð∞Þ

�
2 ≃

�
RðhÞ
Rð∞Þ

�
2

; ð4Þ

which compares the efficiency of reflection when the
meniscus is of height h to the case of a fully developed
meniscus. Its dependence on h is reported in Fig. 6. We
comment on the different branches of this graph.
(i) The fully immersed barrier is obtained for values of h

smaller than −1 mm. This regime cannot be extended to

FIG. 4. Experimental setup for the measurement of the reflec-
tion coefficient. P stands for piezoelectric transducer and the
distance between the vertical barrier and the edge of the basin is
longer than sketched here.

FIG. 5. Typical acoustic spectra for different elevations.

FIG. 6. Evolution of the normalized energy reflection coeffi-
cient as a function of the height of the barrier h.
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0 > h ≥ −1 mm as a dewetting transition is always
observed. Because of the strong localization of the energy
of a surface wave close to the interface (the velocity
field decays exponentially with a penetration length
1=kw ≃ 2.5 mm), the reflection coefficient can hardly be
distinguished from zero. This result has been predicted for
gravity waves [13] and generalized to gravity-capillary
waves [14]. Theoretical values of RðhÞ2 using equations in
Section 6 of [14] for h ¼ −2 mm and h ¼ −1 mm are,
respectively, 0.05 and 0.21 [note that figure 6 shows
½RðhÞ=Rð∞Þ�2 and not RðhÞ2].
(ii) At heights h > 5 mm, the reflection coefficient is

nearly constant. The meniscus is fully developed and the
contact line no longer pinned at the top corner of the barrier,
its motion giving rise to an additional dissipation. The
theoretical investigation of this problem is complex since
the usual no-slip boundary condition (BC) leads to a
divergence. Other BCs have to be considered, involving
an additional length scale such as a slip length or a
microscopic cut off [15]. Even though the first observations
are almost a century old [16], a global picture of the local
dissipation close to the contact line is still missing and has
only been achieved in a few limits (see [17,18], and
references therein). Using such a BC, the reflection
coefficient Rð∞Þ2 in the limit of small amplitudes and
inviscid fluid can be expressed as a function of a phenom-
enological parameter [19].
(iii) Between these two limiting cases, the contact line is

pinned at the edge of the barrier, the meniscus being of
height h. The value of the contact angle of the unperturbed
surface is not a free parameter but can be deduced from h.
The maximum reflection coefficient is observed when the
meniscus vanishes, that is h ¼ 0.
Within the precision of our measurements, no disconti-

nuity occurs when the contact line leaves the corner
(h≃ 5 mm), showing that the edge condition continuously
changes from a pinned-end one to an almost free-end one,
which can be described using the phenomenological law
reported in [19] and commonly used in the literature.
Conclusion.—We have shown how acoustic waves can

be used to characterize surface waves. We have emphasized
that this method gives access to both amplitudes of
counterpropagating waves. Even if the focus was set on
water waves, the same setup can be applied to any kind of
surface waves, as long as its amplitude and frequency
remain small compared to the acoustical ones. Other
potential candidates include Rayleigh waves or dynamical
deformations of thin metallic plates, films, or membranes,
in which the full deformation field may often be acquired
with optics but with a much more complex and expensive
setup. This method was then used to measure the reflection

coefficient of gravity-capillary waves depending on the size
of the meniscus. We reported a strong dependence on this
parameter: between a pinned contact line with no meniscus
and a fully developed meniscus with no specific constraint
on the contact line, the energy reflection coefficient may be
divided by as much as two. The present work about wetting
is a glimpse into a vast domain and could, for instance, be
extended to the study of nonlinearities in the case of high
amplitude waves. The dependence of this effect on the
frequency and direction of the surface wave and on the
properties of the barrier (which could be nonvertical,
hydrophobic, porous, or nonhomogeneous) is also of
interest. The reflection process also leads to a time shift
which has been predicted in some limits (see, e.g., [20]) and
whose dependence can be measured with this setup.
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