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There is considerable fundamental and applicative interest in obtaining nondiffractive and non-
dispersive spatiotemporal localized wave packets propagating in optical cubic nonlinear or Kerr media.
Here, we analytically predict the existence of a novel family of spatiotemporal dark lump solitary wave
solutions of the (2 + 1)D nonlinear Schrédinger equation. Dark lumps represent multidimensional holes
of light on a continuous wave background. We analytically derive the dark lumps from the hydrodynamic
exact soliton solutions of the (2 + 1)D shallow water Kadomtsev-Petviashvili model, inheriting their
complex interaction properties. This finding opens a novel path for the excitation and control of optical
spatiotemporal waveforms of hydrodynamic footprint and multidimensional optical extreme wave

phenomena.
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Introduction.—The propagation of intense, ultrashort
pulses of electromagnetic radiation in a nonlinear medium
is a multidimensional phenomenon, leading to complex
spatiotemporal behavior. Pulse dynamics is influenced
by the interplay of various physical mechanisms: the
most important among them being diffraction, material
dispersion, and nonlinear response [l]. Motivated by
the strong applicative interest in the generation of high-
intensity femtosecond pulses, a significant research activity
on spatiotemporal light pulse propagation has been carried
out over the past decades. Since the 1990s, theoretical
and experimental studies of the self-focusing behavior of
intense ultrashort pulses [2—12] have indicated that spatial
and temporal degrees of freedom cannot be treated sepa-
rately. When the three length scales naturally associated
with diffraction, dispersion, and nonlinearity become com-
parable, the most intriguing consequence of space-time
coupling is the possibility to form a nondiffractive and
nondispersive localized wave packet, namely, a spatiotem-
poral soliton or light bullet [2]. A strict constraint for the
formation of light bullets is that the nonlinear phase
changes counteract both the linear wave front curvature
and the dispersion-induced chirp, thus leading to space-
time focusing [7,9]. Vice versa, normal dispersion rules out
the possibility to generate bullet-type spatiotemporal local-
ized wave packets. In this regime, qualitatively different
behaviors such as temporal splitting and spectral breaking
have been observed [3-6]. In the 2000s, theoretical and
experimental studies have demonstrated that nondiffractive
and nondispersive localized wave packets also exist within
the normal dispersion regime, in the form of the so-called
nonlinear X waves, or X-wave solitons [13-15].

Defeating the natural spatiotemporal spreading of wave
packets is a challenging and universal task, appearing in any
physical context that involves wave propagation phenomena.
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Ideal particlelike behavior of wave packets is demanded in a
variety of applications, such as: microscopy, tomography,
laser-induced particle acceleration, ultrasound medical
diagnostics, Bose-Einstein condensation, volume optical-
data storage, optical interconnects, and those encompassing
long-distance or high-resolution signal transmission.

In this Letter, we contribute to the field of nondiffractive
and nondispersive spatiotemporal localized wave packets
in cubic nonlinear (or Kerr) optical media by predicting the
existence and the interactions of dark lump solitary wave
solutions of the (2 + 1)D nonlinear Schrodinger equation
(NLSE). The key point of our approach consists in that
we are able to derive the conditions for optical dark lump
solitary waves existence and analytically describe their
shape and interactions from the exact soliton solutions of
the (2 + 1)D Kadomtsev-Petviashvili (KP) equation [16].
In hydrodynamics, the KP equation describes weakly
dispersive and small amplitude water wave propagation
in a (24 1)D framework, in the so-called shallow water
regime (see, e.g., [17-20]). Our results recall and extend the
connection between nonlinear wave propagation in optics
and hydrodynamics, that was established in the 1990s
to describe optical instabilities, dark stripe, and vortex
solitons in Kerr media [21-26].

Our treatment below goes as follows. We give first the
essential transformations that permit us to construct
dark solitary waves of the optical (2 + 1)D NLSE, starting
from exact multi-lump solutions of the KP-I equation.
We consider the propagation of dark-lump solitary waves
in the anomalous dispersion and self-defocusing regime.
Then, we highlight complex dark lumps’ interactions of the
(24 1)D NLSE, that surprisingly mimic the behavior of
multilump solutions of the KP-I equation. To conclude,
we briefly discuss the conditions for the experimental
observation of dark lumps in nonlinear optics.

© 2016 American Physical Society
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Optical NLSE solitary waves of hydrodynamic KP
origin.—The dimensionless time-dependent paraxial wave
equation in cubic Kerr media in the presence of group-
velocity dispersion and limiting diffraction to one dimen-
sion reads as [13]:
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where u(f,y,z) represents the complex wave envelope;
t, y represent temporal and spatial transverse coordinates,
respectively; and z is the longitudinal propagation coor-
dinate. Each subscripted variable in Eq. (1) stands for
partial differentiation. «,f > 0,y are real constants that
represent the effect of dispersion, diffraction, and Kerr
nonlinearity, respectively. Of course, Eq. (1) may also
describe (2 4 1)D spatial dynamics in cubic Kerr media,
neglecting group-velocity dispersion; in this case, f, y
represent the spatial transverse coordinates, and z the
longitudinal propagation coordinate.

Writing u = /pexp(if) and substituting in Eq. (1),
we obtain for the imaginary and real parts of the field
the following system of equations for (p, 6),
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Let us consider now small corrections to the stationary
continuous wave (cw) background solutions of Egs. (2)
and set

p=po+1. 0 =ypoz + ¢, (3)

with constant p,. With a small positive parameter
0 <e<x 1, we assume the following scaling n~ ¢ ~
¢ ~O(e), 0,~0,~0(e"?), d,~O(e). That is, we
assume a weak nonlinearity, weak diffraction, and slow
modulation of cw wave. Then, we obtain from Eqgs. (2)

n, + po(agy, +ﬂ¢y_v) +ane,), = 0(67/2)’

¢.—n +g <¢? - 2%)()%) =O(e%). 4)

Introducing the coordinates 7 =1t—cyz, V=Y, ¢ =2

(co = /~7apy) and noting that 9.~ O(e¥?), from
Eqgs. (4), we have
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From the second of Egs. (5), we obtain 7 = —(c/7)¢p.+
(higher order terms), iterating to find the higher order
terms, we obtain
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By inserting (6) in the first of Eqgs. (5), we have
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Equation (7) is known as the potential KP equation [19]. In
fact, from Eq. (7), we obtain the evolution equation for #,
namely, we have the KP equation at the leading order,
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Notice that, in the case a > 0, > 0, y < 0, we have the
KP-I case, and when a < 0, y > 0, # > 0, the KP-II case.
The Kerr nonlinearity y in Eq. (1) leads to a self-phase
modulation of an optical pulse, and it transfers to the
advection term in the hydrodynamic interpretation of
Eq. (8).

Therefore, we underline that the optical NLSE
solution u(¢,y,z) of hydrodynamic KP solution origin
n(z,0,¢), p(z,0,¢)] with t=1t—cpz, v=1y, and ¢ =2
can be written as:

u(t,y.z) = \/po + n(z.v,¢)elrrotdmvel —(9)

In the following, we focus our attention on the anoma-
lous dispersion and self-defocusing regime (@ > 0, f > 0,
y < 0), which leads to the KP-I case. The normal dispersion
and self-focusing regime (¢ <0, y >0, > 0), which
leads to the KP-II case, will be analyzed in a future work.
Without loss of generality, we set the following constraints
to the coefficients of Eq. (1), a= 4+/2, p= 6v/2,
y = —2v/2; moreover, we fix p,=1. Note that,
with the previous relations among its coefficients, the
Eq. (8) reduces to the standard KP-I form:
(_ng — o + 77111)1 =31, = 0.

Single NLSE dark lump solution of KP-I origin.—At
first, we proceed to verify numerically the existence of
(24 1)D NLSE dark-lump solitary waves, which is pre-
dicted by the KP-I through Eq. (9) (see, e.g., [18,27] for the
lump solutions of KP-I). In our numerics, the input dark
solitary wave envelope at z = 0 is given by the expression
u(t,y,0) = /1 +n(z,v,0)exp[ig(z,v,0)] with = ¢ and
v =y, where # is a bright lump solution of the KP-I1 Eq. (8),
and ¢, = —(y/co)n.

When considering the small amplitude regime (¢ < 1),
a form of KP lump-soliton solution of Eq. (8) can be
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expressed as [27] n(z,v,¢) = —4le”! — (v — 3e¢)? + ev?]/
[e! + (1 — 3e¢)? + ev?]?. The parameter € rules the ampli-
tude, width, and velocity properties of the KP lump
soliton. The lump peak amplitude in the (¢, v) plane is —4e¢;
the velocity in the ¢ direction is 3e. Moreover,
P(,0.¢) = 23/ 2e(r — 3e¢) /[1 + e(r — 3ec) + €*v?].

Figure 1 shows the numerical spatiotemporal envelope
intensity profile of a NLSE dark lump solitary wave in the
y-t' plane (¥ =t — cyz), at the input z = 0, and after the
propagation distance z = 100, for ¢ =0.05. In the
numerics, the initial dark NLSE profile of KP-I lump
propagates stably in the z direction, with virtually negli-
gible emission of dispersive waves, with the predicted
velocity ¢y + 3¢, and intensity dip of 4e. Thus, the
predicted theoretical dark lump solitary waves of Eq. (1)
of the form (9) are well confirmed by numerical
simulations.

Remarkably, our numerical studies have shown that the
previously described NLSE-KP mapping works well also
for values of ¢ which lead to strong perturbations of the
stationary cw backgrounds (this will be reported elsewhere).

Elastic interaction of two single NLSE dark lumps.—
Next, we consider the interaction of (24 1)D NLSE
optical dark lumps based on the multilump solutions of
the KP-I equation (see, e.g., [18,27,28]).

A formula for the exact multilump solution is available
(see, e.g., [18,27,28]). However, when the lumps are well
separated, a simple sum of those single lump solutions
gives a good approximation of the exact N lump solution,

oL 24 400
Y 200
0.2 0
50
P 200 Y
y 50 -400
FIG. 1. Numerical spatiotemporal dark-lump NLSE envelope

intensity distribution 1— |u|?>, shown in the y-¢ plane with
' =1t-cyz, at z =0, and z = 100. Here, ¢ = 0.05.

that is, n(z,0,¢) = >N, —4ler! — (7; — 3€i6)* + €v7]/
[e7! + (z; — 3€;¢)* + €;0?]%, where ¢; rules the amplitude,
width, and velocity properties of the i-lump soliton,
T, =T — To;, D; = U — 0y, define the i-lump’s location.
Figure 2 shows the initial spatiotemporal envelope
intensity profile |u|> of NLSE dark lumps for N =2
in the y-# plane along with the numerically computed
profiles after propagation distances z = 150 and z = 300.
Here, € = 009, To1 = —20, Vg = 0, €y = 001, Ty = 0,
vg> = 0. One can see from Fig. 2 that two dark lumps with
different amplitudes show an elastic interaction: the tall
lump approaches the small one along the # axis, then they
interact and generate a waveform with two separate peaks
in the y direction. After the interaction, the tall soliton is in
front of the small one, and those lumps keep their profiles.
Abnormal scattering of NLSE dark lump solution.—At
last, we remark that the KP-I equation admits another class
of lump solutions which have several peaks with the same
amplitude in the asymptotic stages |z| >0 (see, e.g.,
[29,30]). Following [30], we call such lump solution
multipole lump. Here, we demonstrate that the (2 + 1)D
NLSE can also support such lump solution. We consider a
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FIG. 2. Numerical spatiotemporal NLSE envelope intensity
distribution |u 2, in the y-¢ plane, showing the interaction
of two dark lumps (N = 2), at the input z =0, at z = 150,
and z = 300. Here, €] = 009, 701 = —20, Vo = 0, €) = 001,
Ty = 0, Vpp = 0.
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FIG. 3.

y

Spatiotemporal NLSE envelope intensity distribution |u|?, in the y-# plane, showing anomalous scattering of dark waves, at

z =0, at z = 100, and z = 200. Top, numerical simulations; bottom theoretical prediction Eq. (9) with KP-I multipole lump solution.

Here, e = 0.1, 7 = 0, vy = 0, ¢y = =50, 6, =0, 6, = 0.

multipole lump solution with two peaks, which is expressed
as [30]: n(z,0,¢) = —20%log F, where F = |f?+ if,+
fi/e+ 17262 +|f1 + 1/el?/2€* + 1/4¢*, and f| = 7,+
2iev; — 12€?¢, + 8, f, = =20 — 24iec + 6,. 71 = 7 — 1y,
v =V -0y, ¢ = ¢— ¢, define the dislocation; §,, &, are
arbitrary complex parameters.

Figure 3 (top) shows the initial spatiotemporal envelope
intensity profile |u|> of a two peaked NLSE dark lump
in the y-t' plane, along with the numerically computed
profiles after propagation distances z = 100 and z = 200,
fore =0.1 (zy = 0,09 =0, ¢y = =50, 6, =0, 5, =0). In
particular, Fig. 3 depicts the scattering interaction of the two-
peaked waves: two dark lumps approach each other along the
¢ axis, interact, and recede along the y axis. These solutions
exhibit anomalous (nonzero deflection angles) scattering due
to multipole structure in the wave function of the inverse
scattering problem. We remark that the numerical result of
NLSE dynamics is in very good agreement with the
analytical dark solitary solution Eq. (9) with a KP-I multipole
lump solution, as seen in Fig. 3 (bottom). Only weak
discrepancies are visible in the wings of the double lumps,
owing to dispersive waves generated during the collision, asa
result of higher order effects to the KP approximation.

Experiments in Optics.—Let us briefly discuss a possible
experimental setting in nonlinear optics for the observation
of cubic spatiotemporal solitary wave dynamics of hydro-
dynamic origin. As to (2 4 1)D spatiotemporal dynamics,
one may consider optical propagation in a planar glass
waveguide (e.g., see the experimental setup of Ref. [9]),
or a quadratic lithium niobate planar waveguide, in the
regime of high phase mismatch, which mimics an effective
Kerr nonlinear regime (e.g., see the experimental setup
of Ref. [11]). As to (2 + 1)D spatial dynamics, one may
consider a cw Ti:sapphire laser and a nonlinear medium
composed of atomic-rubidium vapor (e.g., see the exper-
imental setup of Ref. [24]) or a bulk quadratic lithium

niobate crystal, in the regime of high phase-mismatch
(e.g., see the experimental setup of Refs. [12,31]).

The excitation of spatiotemporal dark lump solitary
waves from nonideal input conditions is a relevant problem
for the experiments, and it will be the subject of further
investigations.

As a final remark, note that the well-known modulation
instability (MI) of plane waves [13,32] or conical
emission, in general, may emerge in the (24 1)D
NLSE scenario. In the case we have considered, that is
anomalous dispersion and self-defocusing regime (a > 0,
p >0, y <0, the NLSE- KP-I correspondence), MI is
absent. Thus, the lumps’ evolution does not suffer the
presence of noise. On the other hand, when considering
the normal dispersion and self-focusing regime (a < 0,
y >0, >0, the NLSE—KP-II correspondence) MI
plays a crucial competing role. In fact, the modulation
instability of the cw background may compete and
ultimately spoil, for sufficiently long propagation dis-
tances, the propagation and interaction of dark solitary
waves in (24 1)D NLSE propagation.

Conclusions.—We have analytically predicted a new
class of dark solitary wave solutions that describe non-
diffractive and nondispersive spatiotemporal localized
wave packets propagating in optical Kerr media. We
numerically confirmed the existence, stability, and pecu-
liar elastic and anomalous scattering interactions of dark-
lump solitary waves of the (2 4+ 1)D NLSE. The key novel
property of these solutions is that their existence and
interactions are inherited from the hydrodynamic soliton
solutions of the well-known KP equation. Our findings
open a new avenue for research in spatiotemporal extreme
nonlinear optics. Given that deterministic optical rogue
and shock wave solutions, so far, have been essentially
restricted to (1 4 1)D models [33-39], multidimensional
spatiotemporal nonlinear waves would lead to a
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substantial qualitative enrichment of the landscape of
extreme wave phenomena.
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