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We present an experiment using a sample of laser-cooled Rb atoms to show that cross-phase modulation
schemes continue to benefit from electromagnetically induced transparency (EIT) even as the transparency
window is made narrower than the signal bandwidth (i.e., for signal pulses much shorter than the response
time of the EIT system). Addressing concerns that narrow EIT windows might not prove useful for such
applications, we show that while the peak phase shift saturates in this regime, it does not drop, and the time-
integrated effect continues to scale inversely with EIT window width. This integrated phase shift is an
important figure of merit for tasks such as the detection of single-photon-induced cross-phase shifts. Only
when the window width approaches the system’s dephasing rate γ does the peak phase shift begin to
decrease, leading to an integrated phase shift that peaks when the window width is equal to 4γ.

DOI: 10.1103/PhysRevLett.116.173002

The interaction between individual photons is notoriously
weak. This is an obstacle, for instance, to optical quantum
computing; while the lack of interactions is helpful for
coherent communications, it leaves the construction of
deterministic logic gates between photonic qubits a difficult
challenge.
Nonlinear optical properties of matter have been used

to mediate an effective interaction between two optical
fields. For example, an intensity-dependent refractive index
provided by an atomic medium can lead to a conditional
phase shift written on one optical “probe” field in the
presence of a second “signal” field. This effective inter-
action serves as the basis for a two-photon gate proposal,
which requires a π rad phase shift to be acquired by the
probe field [1]. The difficulty of achieving such a large
phase shift has prompted the proposal of a new approach
that relies merely on the single-shot detectability of any
observable cross-phase shift, not necessarily π rad [2].
However, even the nonlinearities required for this “weak
nonlinearity” scheme are many orders of magnitude larger
than those achievable in typical situations.
A number of approaches have been proposed for greatly

enhancing the strength of cross-phase modulation (XPM),
including cavity QED [3], unconventional media such
as photonic crystal fibers [4] and hollow-core fibers filled
with alkali gas [5], and, finally, novel physical effects such
as electromagnetically induced transparency (EIT) [6,7];
this Letter addresses the latter.
The original “N scheme” proposed by Schmidt and

Imamoglu [8] made use of a single EITwindow, while later
works investigated double-Λ systems [9,10] to overcome
limitations arising from the group-velocity mismatch
between signal and probe pulses. Many variations on these

multilevel schemes have been introduced [11–16] and the
ability to store light using EIT has even led to cross-phase
modulation between stored pulses of light [17]. In the
past 3 years, remarkably high nonlinearities have been
observed relying on Rydberg blockade in the presence of
EIT [18–21], presaging potentially huge cross-phase shifts.
The enhancement provided by EIT schemes arises

from the spectral narrowness of the transparency window,
which results in a steep refractive index profile for the
probe field. The presence of the signal field introduces an
ac Stark shift, which imprints a phase shift on the probe that
is proportional to the slope of this refractive index profile.
Meanwhile, the ac Stark shift is intensity dependent: a
larger shift will be produced by compressing the signal
energy into a temporally shorter pulse. Presumably, then,
the largest nonlinear effect is achieved when spectrally
narrow transparency windows are perturbed by short,
intense signal pulses. However, reducing the spectral width
of the transparency window ΔEIT implies a slower response
time for the EIT medium. This suggests that a fundamental
limitation may exist for EIT-enhanced XPM schemes; once
the inverse EIT bandwidth 1=ΔEIT exceeds the temporal
width of the signal pulse τs (i.e., once the signal pulse is
shorter in time than the response time of the medium), the
EIT medium may not respond quickly enough to provide a
practical benefit. Theoretical [22,23] and experimental [24]
investigations of step-function signal fields have, indeed,
found that narrower windows, while providing a larger
steady-state phase shift, require more time to reach this
steady state. The authors went on to conclude that such a
slow response time may be a limitation in the case of pulsed
signal fields. However, there has been no study of the
transient behavior of EIT-enhanced XPM in this practically
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more relevant scenario where the signal is a (broadband)
pulse. It has thus far been unclear whether the advantages
of the original theoretical proposal [8] (which treated only
the single-mode problem) hold in practice.
Here we show experimentally that narrow transparency

windows continue to benefit XPM even when τs ≪ 1=ΔEIT.
The slow dynamics reported for step responses [22–24] are
actually at the root of the enhancement offered by EIT in the
regimes of most practical interest, namely, narrow trans-
parency windows perturbed by short, intense signal pulses.
While the peak phase shift saturates when τs ≤ 1=ΔEIT, it
does not decrease as ΔEIT → 0, and the narrow EIT band-
width serves to prolong the effect of the short signal pulse.As
a result, we find that in the short-pulse regime, the integrated
phase shift (though not the peak phase shift) continues to
scale linearly with 1=ΔEIT. For weak nonlinearity schemes
[2], which rely on the mere detectability of a single-shot
cross-phase shift (not necessarily π rad), this amounts to a
significant advantage over non-EIT schemes. This work
constitutes the first study of EIT-enhanced XPM in this
experimentally relevant regime of spectrally narrow trans-
parency windows perturbed by broadband signal pulses.
We study the effects of EIT on XPM using an ensemble

of 85Rb atoms cooled and trapped in a magneto-optical trap
(MOT). The level scheme, shown in Fig. 1, makes use
of the two 52S1=2 hyperfine ground states along with the
52P3=2 F0 ¼ 2 excited state to form a three-level Λ system.
When the probe and coupling fields satisfy the two-photon
resonance condition (i.e., when their respective detunings
are equal), the atomic medium is rendered transparent to the
probe beam. The degree of transparency (as well as the
refractive index) experienced by the probe beam depends
strongly on its detuning from this two-photon resonance.
Under EIT conditions, pulses of signal light blue detuned
by 40 MHz from the F ¼ 3 → F0 ¼ 4 transition are sent
through the medium, ac Stark shifting the F ¼ 3 hyperfine
ground state. This energy shift of the ground state changes

the two-photon detuning, imprinting a phase shift on the
probe field, which, in the steady state, is inversely propor-
tional to the EIT window width.
The phase shift is measured using a beat-note interfer-

ometry [25] technique (the frequency-domain analog of a
spatial interferometer). A “reference” beam, copropagating
with the probe field but blue detuned by 100 MHz, is also
sent into the medium, serving as a phase reference. This
detuning is large enough that the phase shift imprinted on
the reference beam due to the signal-induced ac Stark shift
is negligible. The phase shift of the on-resonance probe
field manifests itself as a phase shift of the resulting beat
signal, which is read out by demodulation at 100 MHz. The
coupling and signal fields also copropagate with these two
probing fields, and all the beams are focused down to a
beam waist of ≈50 μm centered on the 2 mm diameter
atomic cloud. After an initial 10 ms cooling time, the
magnetic field gradient and trapping lasers are turned off
for 1 ms, leaving only the cw probing and coupling fields
on while pulses of signal light are sent into the medium.
This cycle is repeated and every data point presented below
corresponds to an average of several thousand pulses. The
cloud of atoms has a density of ≈1010 cm−3, and is cooled
down to ≈50 μK, with an optical density of 3 as seen by
the on-resonance probe beam. We observed ≈15% atom
number fluctuations from shot to shot throughout the
experiment. The coupling and signal fields have the same
polarization, which is orthogonal to the polarization of the
probe fields, allowing for the detection of the probe alone.
Figure 2 shows temporal profiles of the cross-phase

shift acquired by the probe beam due to a 40 ns (rms),
0.8 μW peak power Gaussian signal pulse for a variety of
EIT window widths. The spectral widths of the trans-
parency windows were measured separately (by scanning
the frequency of the probe laser across the two-photon

FIG. 1. Level scheme used to implement EIT enhanced XPM in
85Rb atoms. A probe beam (Ωprobe) addressing the 52S1=2 →
52P3=2 transition experiences EIT due to a strong coupling beam
(Ωcoupling), while a detuned signal pulse (Ωsignal) serves to ac Stark
shift the F ¼ 3 ground state, producing a cross-phase shift on the
probe field.
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FIG. 2. Temporal profile of XPM for a variety of transparency
window widths (as labeled in the legend). After the arrival of the
40 ns (rms) Gaussian signal pulse, the phase shift rises with a time
scale given by the signal pulse duration, irrespective of ΔEIT. The
decay is governed by the larger of τs and 1=ΔEIT. For
1=ΔEIT > τs, the phase returns to its original steady-state value
at a rate given by ΔEIT. In addition, the peak phase shift saturates
as the window width is narrowed. The fits to the data (solid lines)
are obtained from a linear time-invariant system model of the
interaction [26].
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transition) and are listed in the legend; a ground state
dephasing rate of 90 kHz was inferred from these window
widths. The coupling beam powers ranged from 192 nW to
5 μW depending on the desired EIT window width while
the on- and off-resonance probe powers were kept at 8 and
100 nW, respectively, throughout. Each trace in Fig. 2 is an
average of 2500 signal pulses. Contrary to step-response
behavior, the rise of the phase shift is seen to be indepen-
dent of the EIT window. While the peak phase shift
saturates for small ΔEIT, it does not decrease and the effect
of the signal pulse lasts longer for narrower windows. For
example, in the case of a 0.56 MHz transparency window,
the 40 ns signal pulse produces a phase shift that decays
with a 1=e time of 1.1 μs.
The solid curves in Fig. 2 are fits to the data based on a

linear time-invariant (LTI) model; in the cross-Kerr regime,
we can abstract the underlying nonlinearity and treat the
phase of the on-resonance probe field as the output of a
linear system, which is being driven by the signal field
intensity. This phase, then, is given by the convolution of
the Gaussian signal pulse with the impulse response
function of the EIT system, which can be well approxi-
mated by a decaying exponential with decay constant τ.
The result of the convolution yields the following expres-
sion for the time dependence of the nonlinear phase shift:

ϕðtÞ ¼ ϕ0ns
2τ

eτ
2
s=2τ2e−t=τ

�
1þ erf

�
tffiffiffi
2

p
τs

−
τsffiffiffi
2

p
τ

��
; ð1Þ

where ϕ0 is the integrated phase shift per photon, ns is the
number of signal photons, and τs is the rms duration of the
signal pulse intensity. In a separate work [26], we have
theoretically investigated the validity of this approach and
found excellent agreement with a rigorous semiclassical
treatment. When fitting, both the signal pulse duration τs
and the time constant of the decaying exponential τ were
left as free parameters (along with the magnitude of the
shift and a horizontal offset); their quantitative agreement
with the theoretically known values are discussed below.
Figure 3 plots the peak and integrated phase shifts, as

extracted from Fig. 2, versus ΔEIT (note inverted scale).
While single-mode as well as step-response treatments
yield a linear dependence of phase shift on 1=ΔEIT, the peak
phase shift saturates in the presence of a broadband signal
pulse as ΔEIT is narrowed (left to right in the figure). The
vertical dashed lines in Fig. 3 denote the 2 MHz bandwidth
of the signal pulse. We see, then, that the enhancement
provided by narrow EIT windows saturates once the signal
bandwidth exceeds that of the EIT system. For purposes of
achieving π rad phase shifts, this clearly presents a limi-
tation. The integrated phase shift, on the other hand,
continues its linear growth far into the regime where the
peak phase shift has saturated. Decreasing the EITwindow
by an order of magnitude causes the integrated phase shift
to grow proportionally while the peak phase shift grows by

only a factor of 2. In fact, it is only the finite coherence time
of our system that disrupts the linear scaling of the
integrated cross-phase shift with 1=ΔEIT [26]. The dephas-
ing in our system is due to lingering, inhomogeneous
magnetic fields that persist during the measurement. As
ΔEIT nears the dephasing rate γ, the peak phase shift will
begin to drop, leading to an integrated phase shift that peaks
when ΔEIT ¼ 4γ.
The red curve in Fig. 3 is a fit to the data using an

expression for the integrated phase shift as derived from the
LTI model [26]. Based on separate measurements of EIT
window widths, a dephasing of 90 kHz was assumed,
leaving only a single free parameter, which agrees very well
with the expected value given knowledge of the beam
waist, detuning, optical density, and number of signal
photons in the pulse. It should be noted that the optical
density for the last data point in Fig. 3 (corresponding to
ΔEIT ¼ 0.34 MHz) was 18% lower than the average optical
density used in the remaining data points; this accounts for
the anomalously lower value of the integrated phase shift
for that window width.
Figure 3 shows that the original N-scheme proposal

breaks down when we attempt to exploit both narrow EIT
windows and broadband signal pulses. Given that the peak
phase shift saturates, the linear growth of the integrated
phase shift must be due to the longer duration of the effect.
The temporal profile of the cross-phase shift [Eq. (1)]
contains in it a dependence on both the signal pulse duration
τs and the EIT response time τ. In the narrow EIT regime
(τ ≫ τs), these can be regarded as the rise and fall times,
respectively, of the cross-phase shift; for short times t, the
error function term dominates, its time scale set by τs,
whereas for longer times the decaying exponential will take
over with a time constant governed by the EIT system.
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FIG. 3. Peak (left) and integrated (right) phase shifts as
extracted from Fig. 2 plotted against EIT window width (note
inverted scale). Decreasing the EIT window width by an order of
magnitude results in an integrated phase shift that grows (nearly)
proportionally while the peak phase shift saturates after increas-
ing by a factor of 2. The vertical dashed line at 2 MHz
corresponds to the bandwidth of the signal pulse. The deviation
from linearity of the integrated phase shift occurs when the
transparency window becomes comparable to the dephasing rate
of the EIT system. The red curve is a fit to the data based on a
linear time-invariant model.
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Figure 4 plots the rise and fall times (i.e., τs and τ,
respectively) as extracted from the fits to Fig. 2. The
roughly constant rise time of approximately 80 ns arises
from the smearing out of the signal pulse duration (40 ns)
by the measurement sampling period of 67 ns. The fall
time, on the other hand, is seen to grow as the EITwindow
is narrowed. The presence of the signal pulse inside the
medium disrupts the atomic coherence established by the
probe and coupling fields. After the signal pulse passes, this
coherence returns to its steady-state value on a time scale
governed by the width of the EIT window. The lower field
strengths necessary for narrow EITwindows yield a slower
optical pumping rate back into the dark state, and, there-
fore, a longer time is needed to return to steady state. The
red line in Fig. 4 is a theoretical curve (with no free
parameters) for the fall time τ of the phase shift:

τ ¼
�
1þ d0

4

�
1 −

2γ

ΔEIT

��
2

ΔEIT
: ð2Þ

This expression is introduced as the exponential rise time
of cross-phase modulation in the case of a step-function
signal field [22]. Since the impulse response is the
derivative of the step response, Eq. (2) carries over as
the decay constant τ found in the exponential term of
Eq. (1). We see, then, that the decay of the cross-phase shift
in the wake of broadband signal pulses (τs ≪ 1=ΔEIT)
obeys the same dynamics as the step response of XPM. In
both cases, a linear system is evolving toward a steady state
—either returning to its original steady state upon passage
of the signal pulse or progressing towards a new steady
state in the presence of a step-function signal field. This is
why we conclude that the slow dynamics reported for the
step response of EIT enhanced XPM are actually at the
root of the enhancement for pulsed-signal XPM when
τs ≪ 1=ΔEIT. However, it is obvious that the theoretical
curve in Fig. 4 systematically underestimates the observed

decay times. This discrepancy can be accounted for by
noting the presence of magnetic sublevels, which have
differing coupling strengths to the F0 ¼ 2 excited state
manifold. Since the atomic population was distributed
among these sublevels, parallel Λ systems arose, with
differing spectral widths. See Supplemental Material [27]
for the details of how this results in observed fall
times that are longer than those predicted by Eq. (2), which
considers only a single Λ system.
We have experimentally demonstrated that narrow EIT

windows continue to provide a benefit for cross-phase
modulation schemes even when the signal pulse duration
is much shorter than the inverse window width. While the
peak phase shift saturates, the integrated phase shift con-
tinues to scale linearly with 1=ΔEIT. With respect to signal
pulse duration, there is no minimum acceptable EITwindow
width: the integrated phase shift will continue to increase
as the window is narrowed, limited only by dephashing of
the EIT system. The extended duration of the cross-phase
shift afforded by narrow EIT windows allows for a longer
measurement time, which can bring about a significant
reduction in noise. This enhancement is very promising
for all-optical quantum computing schemes, as well as other
applications relying on the nonlinear effects of low-energy
optical pulses. We have recently used this to observe the
cross-phase modulation of a single, postselected photon on a
coherent state probe field [28].
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