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We revisit the concept of near-forward rescattering strong-field photoelectron holography introduced by
Y. Huismans et al. [Science 331, 61 (2011)]. The recently developed adiabatic theory is used to show how
the phase of the scattering amplitude for near-forward rescattering of an ionized electron by the parent ion is
encoded in and can be read out from the corresponding interference pattern in photoelectron momentum
distributions (PEMDs) produced in the ionization of atoms and molecules by intense laser pulses. A
procedure to extract the phase is proposed. Its application to PEMDs obtained by solving the time-
dependent Schrödinger equation for a model atom yields results in good agreement with scattering
calculations. This establishes a novel general approach to extracting structural information from strong-
field observables capable of providing time-resolved imaging of ultrafast processes.
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An electron ionized from an atom or molecule by a strong
laser field being driven by the field may return back and
undergo rescattering by the parent ion [1,2]. This results in
various processes such as elastic scattering [3,4], high-order
harmonic generation [5], core excitation [6], multiple
ionization [7], etc., constituting the subject of rapidly
growing attosecond physics [8]. The goal is to extract
structural information from the observable photoelectron
and harmonic spectra, ultimately in a time-resolved manner.
In recent years, a number of promising approaches to
achieve this goal have been proposed [6,9–14]. In particular,
it was shown theoretically [15] and demonstrated exper-
imentally for atoms [16,17] and molecules [18] that the
differential cross section for near-backward rescattering of
an ionized electron by the parent ion can be accurately
extracted from the photoelectron momentum distribution
(PEMD). The experimental technique has been extended to
time-resolved imaging of internuclear dynamics in mole-
cules [19]. The differential cross section extracted from
PEMDs in these experiments is given by the modulus of the
electron-ion scattering amplitude squared [20]. In this Letter
we propose a method that enables one to extract comple-
mentary structural information represented by the phase of
the scattering amplitude in the near-forward direction. The
observability of the phase of a scattering amplitude is known
from the Mott scattering of identical particles [21]. The
phase is fundamental for matter wave interferometry: in
neutron [22] and atom or molecular [23] optics, electron-
atom collisions [24], and particle physics [25]. Here, we
reveal its presence in strong-field observables.

Strong-field PEMDs usually exhibit a rich interference
structure determined by the different phases involved. The
possibility to extract structural information from the phase-
sensitive patterns in PEMDs is termed strong-field photo-
electron holography (SFPEH), by analogy with optical
holography [26]. The SFPEH pattern we are interested in
was identified in a recent experiment with xenon [27] and
then observed for other atoms [28–30] and molecules [31].
From the theoretical analysis in Ref. [27] it was recognized
that this pattern results from the interference of electrons
flying directly to the detector after tunneling ionization and
those undergoing near-forward rescattering by the parent
ion. It was also suggested that this pattern should encode
some structural information [27,29,32], but what kind of
information and how to decode it remained unknown. In
this Letter we answer these most important questions.
We consider PEMDs produced in the ionization of an

electron from a bound state in a central potential VðrÞ by
few-cycle pulses of an intense linearly polarized laser field
FðtÞ ¼ FðtÞez, Fð�∞Þ ¼ 0. We wish to demonstrate that
they contain a general SFPEH pattern from which the phase
of the amplitude of near-forward elastic scattering by the
potential VðrÞ can be extracted. Our analysis is based on
the adiabatic theory [33], which is the asymptotics for
ϵ → 0, where ϵ is the ratio of the atomic and laser field time
scales. The solid mathematical foundation of this theory is
confirmed by its good quantitative performance [33,34].
The PEMD in the adiabatic theory has the form
PðkÞ ¼ jIaðkÞ þ IrðkÞj2, where IaðkÞ and IrðkÞ are the
adiabatic and rescattering parts of the ionization amplitude,
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respectively, and k ¼ ðk⊥; kzÞ is the photoelectron
momentum. In leading order in ϵ, the adiabatic part is
given by (atomic units are used throughout)

IaðkÞ ¼ ð2πÞ1=2
X

i

A0ðk⊥; ti0Þ
jFðti0Þj1=2

eiSðti0;kÞ−is0ðti0Þ; ð1Þ

where

Sðt;kÞ ¼ 1

2
k2⊥tþ

1

2

Z
t

0

½kz − v∞ þ vðt0Þ�2dt0; ð2aÞ

s0ðtÞ ¼ E0tþ
Z

t

−∞
½E0ðt0Þ − E0�dt0; ð2bÞ

vðtÞ ¼ −
R
t
−∞ Fðt0Þdt0, and v∞ ¼ vð∞Þ. Here, E0ðtÞ is the

energy of the Siegert (outgoing-wave) state originating
from the initial bound state with energy E0 ¼ E0ð�∞Þ in
the presence of a static electric field equal to the instanta-
neous value of FðtÞ and A0ðk⊥; tÞ is the transverse
momentum distribution amplitude in this state [33,35].
The summation in Eq. (1) runs over the different ionization
moments ti0 ¼ ti0ðkzÞ defined by

kz − v∞ þ vðti0Þ ¼ 0: ð3Þ
The rescattering part is given by

IrðkÞ ¼ ð2πÞ1=2
X

ir

A0ð0; tiÞfðp; θÞ
jðtr − tiÞ3FðtiÞSr00j1=2

× eiSðtr;kÞ−iSðtr;tiÞ−is0ðtiÞ; ð4Þ
where

Sðtr; tiÞ ¼
1

2

Z
tr

ti

½vðtÞ − vðtiÞ�2dt: ð5Þ

Here, fðp; θÞ is the scattering amplitude for the potential
VðrÞ at the incident momentum p ¼ jufj and scattering
angle θ¼arccosð½kz−v∞þvðtrÞ�=ufÞ, where uf¼vðtrÞ−
vðtiÞ and S00r ¼ −FðtrÞ½kz − v∞ þ vðtiÞ� þ u2f=ðtr − tiÞ.
The summation in Eq. (4) runs over the different pairs
of the ionization ti ¼ tiðk⊥; kzÞ and rescattering tr ¼
trðk⊥; kzÞ moments defined by

ðtr − tiÞvðtiÞ ¼
Z

tr

ti

vðtÞdt; ð6aÞ

½vðtrÞ − vðtiÞ�2 ¼ k2⊥ þ ½kz − v∞ þ vðtrÞ�2: ð6bÞ
For brevity, some phase factor common for all terms in
Eqs. (1) and (4) is omitted.
The transverse component k⊥ of the photoelectron

momentum in Eqs. (1) and (4) has different origins. In
the adiabatic part (1), an electron is ionized at time ti0 with
the initial momentum k⊥; Eq. (3) means that its initial
momentum along the field is zero. The distribution of the
ionized electrons in k⊥ is determined by the transverse
momentum distribution amplitude A0ðk⊥; ti0Þ, which
accounts for the interaction with the parent ion during

tunneling ionization. Their motion after ionization is driven
only by the field; the interaction with the parent ion causing
rescattering appears only in the next order in ϵ, so the
distribution in k⊥ remains unchanged. The rescattering part
(4) accounts for the latter interaction. Here, an electron is
ionized at time ti with zero initial momentum. Being driven
by the field, it returns to the parent ion at time tr with
momentum ufez. As a result of rescattering, its momentum
acquires the transverse component k⊥, with Eq. (6b)
ensuring the conservation of energy in the rescattering
event. For forward rescattering θ ¼ 0, k⊥ ¼ 0, and
kz − v∞ þ vðtiÞ ¼ 0. As seen from Eqs. (3) and (6), in this
case ti0ðkzÞ ¼ tið0; kzÞ. Thus, the same collinear classical
trajectory determines both the adiabatic and rescattering
contributions; let tr0ðkzÞ ¼ trð0; kzÞ denote the moment of
rescattering for this trajectory. In the adiabatic regime
tr0 − ti0 ¼ Oðϵ−1Þ, jufj ¼ Oðϵ−1Þ, and the PEMD is local-
ized in the region k⊥ ¼ Oðϵ0Þ and kz ¼ Oðϵ−1Þ [33]. Then
the solutions to Eqs. (6) can be divided into two groups
corresponding to either near-forward, θ ¼ Oðϵ1Þ, or near-
backward, π − θ ¼ Oðϵ1Þ, rescattering. We are interested
only in the former case. In this case Eqs. (6) have a solution
ðti; trÞ located at a distance Oðϵ1Þ from ðti0; tr0Þ. This
establishes a correspondence between the adiabatic (direct)
terms in Eq. (1) and the near-forward rescattering terms in
Eq. (4) contributing to the PEMD at the same k. Let us pick

up one pair of the corresponding terms, denoting themby IðiÞa
and IðiÞr . They act as the reference and object waves in optical
holography [26], respectively. Their interference produces
the SFPEH in focus here. The corresponding pattern in the
PEMD is easily distinguishable from the other interference
structures caused by the different terms in Eqs. (1) and (4)
and can be considered separately. We have

jIðiÞa þ IðiÞr j2 ¼ jIðiÞa j2 þ jIðiÞr j2 þ 2jIðiÞa IðiÞr j cosΔϕAA; ð7Þ

whereΔϕAA is the difference of the phases of I
ðiÞ
a and IðiÞr . By

expanding this interference phase in ϵ we obtain

ΔϕAA ¼ 1

2
k2⊥ðtr0 − ti0Þ þ αþOðϵ1Þ; ð8Þ

where α is the phase of the scattering amplitude
fðp; θÞ ¼ jfðp; θÞjeiαðp;θÞ. The first and second terms on
the right-hand side of Eq. (8) have ordersOðϵ−1Þ andOðϵ0Þ,
respectively; we emphasize that no other terms appear in
Eq. (8) in the specified orders in ϵ. The first term has a
classical origin and was discussed in Refs. [27,28,32]. The
second quantum term α plays the key role in the present
analysis; as far as we know, it has not appeared in the
literature. Thus, the adiabatic theory [33] predicts that
strong-field PEMDs contain an interference pattern deter-
mined by the phase (8). The structural information repre-
sented by αðp; θÞ in the region of its arguments as functions
of ðk⊥; kzÞ covered by the PEMD is encoded in this pattern
and can be extracted from it.
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Let us show that this is indeed the case. The adiabatic
theory is currently developed only for potentials without a
Coulomb tail. To stay within the region of applicability of
the theory, we illustrate our analysis by calculations for a
screened Coulomb potential

VðrÞ ¼ − exp½−ðr=aÞ2�=r: ð9Þ

The dependence on the target is illustrated by considering
two values of the screening parameter, a ¼ 10 and 20. In
both cases, the initial state is the ground 1s state with
energy E0 ≈ −0.4855 and −0.4963, respectively. The
PEMDs are obtained by solving the time-dependent
Schrödinger equation (TDSE) using a method developed
in Ref. [36]. We first consider a one-cycle pulse defined by
FðtÞ ¼ −

ffiffiffiffiffi
2e

p
F0ð2t=τÞe−ð2t=τÞ2 with the amplitude F0 ¼

max½FðtÞ� ¼ 0.1 (corresponding to the intensity of
3.5 × 1014 W=cm2) and duration τ ¼ 75 (λ ≈ 800 nm).
For this pulse there exist only two direct terms in
Eq. (1) originating from each of the two half cycles and
only the first of them has a near-forward rescattering
counterpart in Eq. (4) [33], which makes the interference
structure of the PEMD especially simple. The PEMD for
this pulse calculated with a ¼ 10 is shown in Fig. 1(a). One
can see two types of interference fringes. The nearly
vertical high-contrast ones result from the interference of
the two direct contributions in Eq. (1). These fringes are
well known theoretically [37,38], but are usually not

observable experimentally (with a few important excep-
tions [39–41]) because their position depends on the
intensity and they are averaged out in the integrated signal
from the laser focal volume. The less pronounced nearly
horizontal fringes are caused by the interference of the first
direct and the corresponding near-forward rescattering
contributions in Eqs. (1) and (4). This is the SFPEH we
are interested in. A similar holographic pattern was
observed experimentally in Refs. [27–31]; the conditions
of its visibility were analyzed in Ref. [42].
To make the horizontal fringes more visible, we apply

the following two-step procedure to the raw TDSE results.
First, we eliminate the vertical fringes by averaging the
PEMD over kz in an interval kz � Δkz of a suitable width
2Δkz. Cuts of the thus obtained averaged PEMDs for the
potential (9) with a ¼ 10 and 20 taken at kz ¼ 2.2 as
functions of k⊥ are shown in Fig. 2(a). For comparison, we
also show the results obtained for the Coulomb potential,
a ¼ ∞. The horizontal fringes are seen as modulations of
the cuts. Second, we fit the cuts by the function

e−fðk⊥Þ½1þ gðk⊥Þ cosΔϕTDSE� ð10Þ

whose form is suggested by Eq. (7). Here, fðk⊥Þ describes a
monotonically decreasing background contribution and is
determined by fitting the logarithmof the averagedPEMDby
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FIG. 1. (a) TDSE results for the PEMDproduced in the ionization
of amodel atomdescribed by the potential (9)witha ¼ 10bya one-
cycle pulse with λ ≈ 800 nm and the intensity of 3.5×
1014 W=cm2. (b) Open circles: interference minima of the near-
forward rescattering SFPEH extracted from the TDSE results using
a procedure described in the text. Solid lines: positions of the
minima in the adiabatic approximation found from ΔϕAA ¼
ð2nþ 1Þπ, with n ¼ 0; 1;…; 4 and ΔϕAA given by Eq. (8).
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FIG. 2. (a) Cuts of the PEMDs calculated for the potential (9)
with a ¼ 10 (red circles) and a ¼ 20 (blue squares) and for the
Coulomb potential (black diamonds) and averaged over kz in the
interval kz ¼ 2.2� 0.1 near the vertical dashed line in Fig. 1(a) as
functions of k⊥. (b) The function cosΔϕTDSE extracted by fitting
the results in panel (a) by Eq. (10). (c) The phase α of the
scattering amplitude extracted from the results in panel (b) using
ΔϕTDSE ¼ ΔϕAA and Eq. (8) (symbols) and obtained from
scattering calculations (solid lines).
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a polynomial. Dividing the fitted function by e−fðk⊥Þ and
subtracting unity, we obtain an oscillating function with a
smooth envelope gðk⊥Þ, which is again fitted by a poly-
nomial. By construction, the remaining factor cosΔϕTDSE is
bounded between −1 and þ1. This factor is shown in
Fig. 2(b). The calculations can be repeated for the different
values of kz. They yield stable results independent of the
details of the fitting procedure at intermediate kz not very
close to the classical boundaries of the PEMD [33] (at kz ¼ 0
and 4.37 for the present pulse). The minima of the thus
extracted factor cosΔϕTDSE as functions of kz for the
potential with a ¼ 10 are shown by open circles in
Fig. 1(b). Their positions nicely agree with the predictions
of the adiabatic theory (8) shown by solid lines. This
confirms the equality ΔϕTDSE ¼ ΔϕAA expected in the
adiabatic approximation. The phase α extracted from this
equality for a ¼ 10 and 20 at kz ¼ 2.2 as a function of k⊥ is
shown by symbols in Fig. 2(c). For both potentials, its values
are in good agreement with the results of scattering calcu-
lations shown by the solid lines. This establishes a procedure
to extract α from a PEMD by means of Eqs. (8) and (10).
Although the results for finite a in Figs. 2(a) and 2(b)

seem to converge to the Coulomb results as a grows, Eq. (8)
does not apply in the Coulomb case, which explains the
absence of the Coulomb results in Fig. 2(c). This is because
Eqs. (1) and (4) were derived under the condition that the
range a of the potential does not exceed the amplitude
F0=ω2 ¼ Oðϵ−2Þ of oscillations of a free electron in the
laser field [33]. For any finite a this condition can be
satisfied by decreasing the frequency ω ¼ Oðϵ1Þ. As
follows from Eq. (8), at the first interference fringe of
the SFPEH pattern we have θ ∼ k⊥=jufj ¼ Oðϵ3=2Þ. The
pattern lies at larger θ. Scattering at such angles probes the
potential at r < Oðϵ−3=2Þ, which is within the region of
validity of Eq. (8). Thus, the adiabatic theory fully covers
the inner region of the potential determining the phase of
the scattering amplitude extracted, with the important
structural information encoded, and only the extreme
Coulomb tail corresponding to very small θ at the edge
of the SFPEH pattern remains not accounted for.
We next demonstrate that the near-forward rescattering

SFPEH pattern survives and the extraction procedure still
works for more realistic pulse shapes. We now consider a
few-cycle pulse with FðtÞ ¼ −F0 cosð2πt=TÞe−ðt=τÞ2 ,
where again F0 ¼ 0.1, T ¼ 165 is the laser period
(λ ≈ 1200 nm), and τ ¼ T=

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
, see Fig. 3(a). The

PEMD for this pulse calculated for the potential with a ¼
10 is shown in Fig. 3(b). The horizontal interference fringes
of the type discussed above are seen at negative kz. They
present a hologram produced by electrons ionized during
the quarter cycle 0 < t < T=4 following the main maxi-
mum of jFðtÞj at t ¼ 0; the other maxima of the field
produce less pronounced interference patterns. We use the
same averaging and fitting procedure to extract the phase α
of the scattering amplitude; the results are shown in
Fig. 3(c). The results of scattering calculations of the phase

are shown in Fig. 3(d). The agreement is good in a wide
region of the photoelectron momentum ðk⊥; kzÞ. This
region maps onto a region of the incident momentum p
and scattering angle θ, which enables one to obtain the
phase αðp; θÞ as a function of its conventional arguments.
For example, along the white dashed lines in Figs. 3(c)
and 3(d) we have p ¼ 2.1. The extracted values of αðp ¼
2.1; θÞ for the two potentials are shown by symbols in
Fig. 3(e). They are in good agreement with the results of the
scattering calculations shown by the solid lines. Note that
the extracted structural information is rather sensitive to the
target and even the relatively small difference between the
two potentials considered is clearly resolved.
It is important to mention that the phase α encoded in the

SFPEH pattern is read out at time tr − ti ≈ tr0 − ti0 after
ionization. This time depends on kz, and hence α as a
function of k⊥ extracted at different kz corresponds to
different times. This means that the structural information
contained in the values of α extracted from a PEMD
provides a time-resolved imaging of the target dynamics.
Such a possibility was recognized in Ref. [27].
Summarizing, we have revisited the concept of near-

forward rescattering SFPEH [27] on the basis of the
adiabatic theory [33]. The corresponding interference
pattern in PEMDs is a robust feature that exists for different
targets and laser pulses and survives focal volume averag-
ing, as confirmed by its experimental observations for
atoms [27–30] and molecules [31]. We have shown that this
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FIG. 3. (a) The electric field of a few-cycle pulse with λ ≈
1200 nm and the intensity of 3.5 × 1014 W=cm2. (b) The PEMD
produced by this pulse calculated for the potential (9) with
a ¼ 10. (c) The phase α (in units of π) of the scattering amplitude
extracted from the results in panel (b). (d) The same phase
obtained from scattering calculations. (e) The extracted (symbols)
and calculated (solid lines) phase αðp; θÞ at a fixed incident
momentum p ¼ 2.1 as a function of the scattering angle θ taken
along the white dashed lines in panels (c) and (d), respectively, for
the potentials with a ¼ 10 and 20.
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pattern encodes the phase of the scattering amplitude for
near-forward rescattering of an ionized electron by the
parent ion. A procedure to extract the phase from PEMDs is
proposed; its results are shown to be in good agreement
with scattering calculations and sensitive to the target
structure. This establishes a novel general approach to
extracting structural information from strong-field observ-
ables capable of providing time-resolved imaging of ultra-
fast processes in the attosecond regime.
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