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Stochastic restart may drastically reduce the expected run time of a computer algorithm, expedite the
completion of a complex search process, or increase the turnover rate of an enzymatic reaction. These
diverse first-passage-time (FPT) processes seem to have very little in common but it is actually quite the
other way around. Here we show that the relative standard deviation associated with the FPT of an
optimally restarted process, i.e., one that is restarted at a constant (nonzero) rate which brings the mean FPT
to a minimum, is always unity. We interpret, further generalize, and discuss this finding and the
implications arising from it.
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Stopping a process in its midst—only to start it all over
again—may prolong, leave unchanged, or even shorten the
time taken for its completion. Among these three possibil-
ities the latter is particularly interesting as it suggests that
restart can be used to expedite the completion of complex
processes involving strong elements of chance. This
observation has long been made in the field of computer
science [1] where the use of restart is now routine as it
drastically improves performance [1–6] of randomized
algorithms [7,8]. The latter often display heavy-tailed
run time distributions, and diverging variances and even
means [2,3,9–12]. Timely restart can then “censor” the tail
of the run time distribution and save the algorithm from
getting “stuck” in sterile areas of the search space where it
is unlikely to find solutions.
Restart is also relevant to many physical, chemical, and

biological processes as it is an integral part of the renowned
Michaelis-Menten reaction scheme (MMRS) [13]. In its
original context the MMRS depicts an enzyme which can
reversibly bind a substrate to form a complex. The substrate
can then be converted by the enzyme to form a product or,
alternatively, unbind and restart the turnover cycle. The
MMRS has attracted interest for more than a century [14],
and today it is also used to describe heterogeneous catalysis
[15–17], in vivo target search kinetics [18], and other
processes. Two important predictions come from its
classical analysis. The rate of an enzymatic reaction should
increase as the concentration of the substrate increases and
decrease as the unbinding rate increases [13]. And yet,
while the first prediction is well established, the second has
never been tested experimentally.
Motivated by rapid advancements in single-molecule

techniques [19–21] we scrutinized the role attributed to
unbinding (restart) in Michaelis-Menten reactions [22]. We
showed, via probabilistic—single-molecule level—analysis
that unbinding of an enzyme from a substrate can reduce
the rate of product formation under some conditions, but
that it may also have an opposite effect. Indeed, as substrate

concentrations increase, a tipping point can be reached
where an increase in the unbinding rate results in an increase,
rather than a decrease, of the turnover rate. When this
happens, a carefully chosen unbinding rate can bring the
enzymatic turnover rate to a maximum (mean FPT to a
minimum) by striking the right balance between the need to
abort prolonged reaction cycles and the need to avoid
premature termination of ongoing ones. Observations sim-
ilar to ours were alsomade in the context of search processes
[23–25], and a universal condition for the existence of a
nonvanishing optimal restart rate was given in Ref. [22].
It was clear, however, that the exact identity of the latter may
depend on fine details of the underlying process (conversion
of the substrate to a product in the case of enzymatic
reactions), and it thus seemed that little can be said in
general about optimal stochastic restart.
In this Letter, we address the question of universality in

FPT processes subject to stochastic restart. As we have
pointed out in Ref. [22], any FPT process [26]—be it the
time to target of a simple Brownian particle or that related
with a more sophisticated random searcher [27–29] or
stochastic process [30–38]—that becomes subject to restart
[24,25,39–48] can naturally be described by the MMRS.
This observation has recently allowed us to give a unified
treatment for the problem of finding a restart rate which
brings the mean completion time of a generic process to a
minimum (optimal restart) [49], and it will be of value here
again. We show that the relative fluctuation in the FPTof an
optimally restarted process is always unity. The result is
first illustrated, by means of example, on the now classical
problem of diffusion mediated search with stochastic restart
[25]. We then prove it in a more general setting and further
demonstrate its validity for a diverse set of examples.
Before concluding, we provide a probabilistic interpreta-
tion of our findings and generalize the basic result to
account for restart time overheads that inevitably occur
in many real life scenarios. In what follows, we use hZi,
σ2ðZÞ, and ~ZðsÞ≡ he−sZi to denote, respectively, the
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expectation, variance, and Laplace transform of a real-
valued random variable Z.
Diffusion with stochastic restart—a simple illustration of

a general principle.—Consider a particle “searching” for a
stationary target via one dimensional diffusion as is
illustrated in Fig. 1(a). The particle starts at the origin,
the initial distance between the particle and the target is L,
and the diffusion coefficient of the particle is D. It has long
been known that in this case the mean FPTof the particle to
the target diverges [26,35,50]. Consider now a scenario in
which, on top of the above, the search process is restarted;
i.e., the particle is returned to its initial position, at some
constant rate r. What is the mean FPT now? This problem
was studied in Ref. [25] by Evans and Majumdar who
found that hTri, the mean FPT of the restarted process, is
given by

hTri ¼
e

ffiffiffiffiffiffiffiffiffiffi
rL2=D

p
− 1

r
: ð1Þ

As anticipated, hTri depends on the restart rate but it is
interesting to note that it is finite for any r > 0. Moreover,
an optimal restart rate which brings hTri to a minimum
exists, as is illustrated in Fig. 1(b), and one could readily
show that it is given by r� ¼ ðz�Þ2D=L2, where z� ≃
1.59362… is the solution to z=2 ¼ 1 − e−z.
Evans and Majumdar continued to compute the full

distribution of Tr and found that in Laplace space it is
given by

~TrðsÞ ¼
sþ r

se
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþrÞL2=D

p
þ r

: ð2Þ

Moments could then be readily computed and we find that

hT2
ri ¼ ð2 −

ffiffiffiffiffiffi
rL2

D

q
e−

ffiffiffiffiffiffiffiffiffiffi
rL2=D

p
− 2e−

ffiffiffiffiffiffiffiffiffiffi
rL2=D

p
Þ=r2e−2

ffiffiffiffiffiffiffiffiffiffi
rL2=D

p
,

from which it is easy to see that the relative standard
deviation in the completion time of the restarted process
is given by

σðTrÞ
hTri

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

ffiffiffiffiffiffiffiffiffiffi
rL2=D

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rL2=D

p
e

ffiffiffiffiffiffiffiffiffiffi
rL2=D

p
− 1

ðe
ffiffiffiffiffiffiffiffiffiffi
rL2=D

p
− 1Þ2

vuut : ð3Þ

The right-hand side of Eq. (3) has a form which suggests
it should be plotted as a function of r=r�. We do so in the
inset of Fig. 1(b) only to find that when r ¼ r� the relative
fluctuation in Tr is exactly unity

σðTr� Þ
hTr�i

¼ 1. ð4Þ

Quite strikingly, and as we will now show, the result in
Eq. (4) is not a peculiarity of diffusion but rather a universal
property common to all FPT processes subject to stochastic
restart.
Fluctuations in the first-passage-time of an optimally

restarted process are universal.—In deriving the main
result of this paper we consider the setting illustrated in
Fig. 2. This setting captures the model of diffusion with
stochastic restart as a special case and further allows us to
generalize lessons learned from it. A generic process starts
at time zero and, if allowed to take place without inter-
ruptions, will finish after a random time T. The process is,
however, restarted at some constant rate r. Thus, if the
process is completed prior to restart the story there ends.
Otherwise, the process will start from scratch and begin
completely anew. This procedure repeats itself until the
process reaches completion.
Denoting the random completion time of the restarted

process by Tr it can then be seen that

Tr ¼
�
T if T < R

Rþ T 0
r if R ≤ T;

ð5Þ

where R is an exponentially distributed random variable
with rate r and T 0

r an independent and identically distrib-
uted copy of Tr. Taking the Laplace transform of Tr we find
(see Supplemental Material [51])
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FIG. 1. (a) An illustration of diffusion mediated search at time
t ¼ 0. (b) The mean FPT to target as a function of the restart rate
for different values ofD=L2. The higher this ratio is the higher the
value of the optimal restart rate r� which brings hTri to a
minimum (see positions marked with full circles). Inset. The
relative standard deviation in the FPT as a function of the restart
rate (normalized by the optimal restart rate).
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FIG. 2. An illustration of a generic process subject to stochastic
restart.
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~TrðsÞ ¼
~Tðsþ rÞ

s
sþr þ r

sþr
~Tðsþ rÞ ; ð6Þ

and note that Eq. (6) generalizes Eq. (2). Indeed, in the case

of diffusion mediated search ~TðsÞ ¼ e−
ffiffiffiffiffiffiffiffiffiffi
sL2=D

p
(Laplace

space representation of the Lévy-Smirnov distribution [35])
and direct substitution of this expression into Eq. (6)
verifies our claim. For a discrete-time analog of Eq. (6)
we refer the reader to Ref. [40].
Using Eq. (6) we compute the first two moments of Tr:

hTri ¼
1 − ~TðrÞ
~TðrÞ

1

r
;

hT2
ri ¼

2ðr d ~TðrÞ
dr − ~TðrÞ þ 1Þ
r2 ~TðrÞ2 : ð7Þ

Now, if the mean FPT of the restarted process attains a
minimum (or a maximum) at some r� > 0 we have
½d ~TðrÞ=dr�jr� ¼ ~Tðr�Þð ~Tðr�Þ − 1Þ=r� simply by taking
the first derivative of hTri and equating it to zero at
r ¼ r�. Substituting this result back into Eq. (7) gives
hT2

r� i¼2ð ~T2ðr�Þ−2 ~Tðr�Þþ1Þ=ððr�Þ2 ~Tðr�Þ2Þ, from which
it is easy to see that σ2ðTr� Þ¼ð ~Tðr�Þ−1Þ2=(ðr�Þ2 ~Tðr�Þ2).
Comparing this result with Eq. (7) we conclude that
Eq. (4) holds for an arbitrary FPT process, and as long
as the restart time R is taken from the exponential
distribution (constant restart rate). It is important to
emphasize that the result holds regardless of the distribu-
tion of the random time T (see Fig. 3 for examples), be it
with heavy tails, or even with an atom at T ¼ ∞, and note
that a classical example of the latter case is diffusion
mediated search in three (or more) dimensions. Deviations
from Eq. (4) may occur when R is not taken from the
exponential distribution. These will be discussed elsewhere.
Equation (4) has an interesting probabilistic interpreta-

tion. Examining Fig. 2, one could ask what determines
whether hTi is larger or smaller than hTδri for an infini-
tesimal δr? When hTi ¼ ∞, it is always larger than hTδri
sinceEq. (7) asserts that the latter is finite.When hTi is finite,
the question above can be answered either by examining a
small r expansion of hTri [22,49] or by arguing probabilisti-
cally. Letting the original process repeat itself over and over
again without restart, one could visit it at a random point in
time and ask what is the mean time left until the next
completion event occurs? This time is known as the mean
residual life time (MRLT) of the process and it is given by
1
2
hT2i=hTi [52].When theMRLTis larger (smaller) than hTi

restart will tend (on average) to speed up (slow down)
completion rendering hTδri smaller (larger) than hTi.
Applying the same logic to a process which is already
subject to restart (simply by seeing it as an original process
of itself), we conclude that when a process is restarted
at an optimal rate its mean andMRLTmust be equal. Indeed,
any deviation from equality is in contraindication to

optimality as it implies ½dhTri=dr�jr� ≠ 0. It thus follows
that hTr� i ¼ 1

2
hT2

r� i=hTr�i, a relation from which Eq. (4) is
attained by simple rearrangement.
Recapitulating this section we note that the normalized

completion time of an optimally restarted process Tr�=hTr� i
has, by definition, mean 1 and, as we have just shown, a
standard deviationwhich also equals unity. It thus follows that
he−sTr�=hTr� ii≃ 1 − sþ s2 þ oðs2Þ—a form which coin-
cides to second order with the Laplace transform of the
exponential distribution ð1þ sÞ−1. However, and as we
illustrate in Fig. 4, the distribution of Tr�=hTr� i is not
universal and deviations from exponentiality may arise
for s ≫ 1.
Stochastic restart with time overheads.—Deriving

Eq. (4) we have implicitly assumed that restart does not
bear with it any time penalty. And yet, when a computer
program is stopped restarting it may involve a time over-
head. Similarly, when an enzyme unbinds from its substrate
time will pass before it binds a new one. This type of
complication can be addressed by generalizing the sto-
chastic renewal law in Eq. (5) to read

Tr ¼ Ton þ
�
T if T < R

Rþ T 0
r if R ≤ T;

ð8Þ

where Ton is a generally distributed random time which
collectively accounts for “delays” that may arise prior to
any completion attempt. Equation (8) furnishes a math-
ematical description of the MMRS, and the effect restart
has on hTri in this case was extensively explored in
Refs. [22,49]. Here, we will be interested in the effect it
has on fluctuations.

FIG. 3. The mean (solid lines) and standard deviation (dashed
lines) in the FPT of a restarted process as a function of the restart
rate. Plots are made using Eq. (7) for three different time
distributions of the underlying process subject to restart: (i) Fréchet
distribution PrðT ≤ tÞ ¼ e−t

−αðt > 0Þ, with α ¼ 1; (ii) Log-
normal distribution PrðT ≤ tÞ¼ R

t
0 ½xσ

ffiffiffiffiffi
2π

p �−1 exp ½−ðlnðxÞ−μÞ2=
2σ2�dxðt>0Þ, with μ ¼ 1 and σ ¼ 1.2; (iii) Log-logistic distri-
bution PrðT ≤ tÞ ¼ ½1þ ðt=αÞ−β�−1ðt > 0Þ, with α ¼ 3.4 and
β ¼ 1.45. Equation (4) asserts that σðTrÞ will cut hTri at the
exact point at which the latter attains its minimum.
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Utilizing Eq. (8) one could show that (see Supplemental
Material [51])

~TrðsÞ ¼
~Tðsþ rÞ ~TonðsÞ

1þ r
sþr

~TonðsÞð ~Tðsþ rÞ − 1Þ : ð9Þ

Assuming that Ton is equipped with a finite mean and
variance, we then find hTri ¼ ðrhToni þ 1 − ~TðrÞÞ=r ~TðrÞ
and hT2

ri ¼ ð2ð1 − ~TðrÞÞð1þ rhToniÞ2 þ 2rð1þ rhToniÞ×
d ~TðrÞ
dr þ r2 ~TðrÞhT2

oniÞ=r2 ~TðrÞ2. Moreover, in Ref. [49] we
showed that if hTri receives a minimum (or a maximum)
at some r� > 0 the following equation must hold

½ ~Tðr�Þð ~Tðr�Þ−1Þ=ðr�Þ2 d ~TðrÞdr jr� �− ð1=r�Þ¼ hToni. Solving

for ½d ~TðrÞ=dr�jr� and substituting the result in the expres-
sion for hT2

r�i we obtain (see Fig. 5 for illustration)

σðTr� Þ
hTr�i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2ðTonÞ − hToni2

~Tðr�ÞhTr� i2

s
: ð10Þ

Equation (10) generalizes Eq. (4) and while the result is no
longer universal [53] it is surprisingly elegant.
Conclusions.—The advent of novel single molecule and

cell techniques has truly invigorated the experimental
[54–62] and theoretical [63–71] study of fluctuation
phenomena. Notable in that regard are studies directed
towards questions of universality as they allow us to draw
broad, model independent conclusions which are in turn
widely applicable [32,33,72–75]. In this Letter we studied
the effect of stochastic restart on fluctuations in the com-
pletion time of a generic process and showed that when the
restart rate is optimal, in the sense that it minimizes

(or maximizes) the mean FPT of the process, fluctuations
are universal. The prevalence of FPT processes in the
sciences and the multitude of perspectives that bring one
to consider (optimal) restart encourage us to think that the
results we have obtainedwill be of general use. Applications
to the field of single molecule enzymology are particularly
interesting since enzymes are subject to selective pressure
which may have dialed unbinding (restart) rates optimal.
Moreover, note that whenever Ton arises from the amalga-
mation of many independent and low intensity events it will
admit Poisson statistics for which σðTonÞ ¼ hToni. In this
case Eq. (10) reduces to Eq. (4) and the common scenario in
which numerous substrate molecules compete for the bind-
ing of an enzyme is a good example for a situation of that
sort. Will it be found that selective pressure towards optimal
restart rendered fluctuations in enzymatic turnover rates
universal, it would not be the first time that proteins are
found occupying a very special niche within a vastly
accessible phase space [76,77], and yet another example
for the importance of optimality and extremality ideas in
biological physics [78].
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