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Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g.,
in computation, communication, and control. Fully random transformations require exponential time for
either classical or quantum systems, but in many cases pseudorandom operations can emulate certain
properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory
regarding such pseudorandom operations. However, the construction of such objects turns out to be much
harder in the quantum case. Here, we show that random quantum unitary time evolutions (“circuits”) are a
powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time
construction of quantum unitary designs, which can replace fully random operations in most applications,
and shows that generic quantum dynamics cannot be distinguished from truly random processes. We
discuss applications of our result to quantum information science, cryptography, and understanding the
self-equilibration of closed quantum dynamics.
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Random processes are ubiquitous in both natural and
engineered systems. They are both an effective way to
model many systems and a vital tool in algorithms,
communication, control, cryptography, and elsewhere.
However, a random function on n bits is known to require
exp½ΩðnÞ� elementary operations [1] to implement and a
similar number of random bits to even specify [2], meaning
that, in fact, such random functions can neither be found in
nature nor designed on a computer. Instead, we now
know many methods for engineering pseudorandom
functions using far less randomness. These pseudorandom
functions can be proven to be indistinguishable from
truly random functions either by any test that examines
their first k moments [3] (in which case they are called k
designs) or by any computationally limited test [4] (for
which case the term pseudorandom function is usually
reserved). This Letter will focus on k designs.
While these constructions mean that a carefully designed

algorithm can simulate a random function in many circum-
stances, they do not speak to the question of whether
we should expect natural processes to also resemble
random functions. However, it was proved in Refs. [5,6]
that even reasonably short random reversible circuits
yield approximate k designs, meaning that they approxi-
mate well the first k moments of a truly random function.
These circuits are defined to be sequences of basic
reversible operations, each involving three bits, which is
the simplest type of reversible circuit that is computation-
ally universal. As such, they form plausible toy models
for the dynamics of actual systems and provide some
rigorous justification for the intuition that generic

dynamics cannot easily be distinguished from fully random
functions.
In recent decades, quantum mechanics has been found to

dramatically change the nature of information and informa-
tion processing [7], implying, among other things, potential
new applications such as quantum cryptography and com-
putation. The above story needs then to be modified to
account for quantum mechanics. The problem of quantum
pseudorandomnesswas posed in Ref. [8], where it was asked
to what extent random quantum circuits can mimic random
quantum transformations. The simplest quantum systems are
two-level systems, called qubits, and any larger quantum
system can be decomposed into some number n of qubits
[e.g., the state of m fermions in n modes can be expressed
using ⌈ðnmÞ⌉ qubits]. A quantum circuit is a sequence of gates,
each acting on a constant number of qubits. Short quantum
circuits are roughly equivalent in power to time evolution by
local Hamiltonians for short times. The uniform distribution
over unitary matrices is called the Haar measure and, as in
the classical case, it has been extensively studied as a model
of natural generic dynamics [9], with applications to black
holes [10,11], quantum information processing [12–14], and
elsewhere. In a further parallel to the classical case, Haar-
random unitarymatrices on n qubits cannot be implemented,
even approximately, without Ωð4nÞ elementary operations
and Ωð4nÞ random bits [15].
We thus have the same need for quantum pseudorandom-

ness and an analogous notion of unitary k designs. Again,
unitary k designs can be used in place of Haar-random
unitaries in most applications (e.g., for encoding quantum
information to protect from errors [12], or realizing more
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efficient quantum process tomography [8]), but it has been
much harder to prove that efficient unitary k designs exist.
It was long conjectured that random quantum circuits yield
approximate k designs, but for a long time this was known
only for k ¼ 1; in other words, only the first moments of a
quantum state were known to rapidly equilibrate under
random dynamics. However, 1 designs can be realized even
without entangling operations (e.g., a random product of
Pauli matrices will suffice), while Haar-uniform unitaries
create states with large amounts of entanglement [16], so 1
designs do not give a qualitatively good fit for the Haar
measure. A better, but still imperfect, goal is to achieve a 2
design. It is known how to efficiently engineer a 2 design
on a quantum computer by selecting a random element of
the so-called Clifford group—a restricted class of quantum
gates—which involves creating significant entanglement
while still performing operations far simpler than those
resulting from the Haar measure [17].
Initial numerical work suggested that random quantum

circuits were indeed approximate 2 designs [8,18]. Later
work was able to establish that random circuits matched the
entanglement properties of 2 designs [19,20] and, finally, that
they in fact were approximate 2 designs [18,21–23]. Since
even the Clifford group, which is not universal for quantum
computation, yields a 2 design, this too is a limited proxy for
theHaarmeasure. Laterwork achieved 3designs [22,24] (see
also Ref. [25]). In this Letter we settle the question and
achieve k designs for any k via circuits of length polyðn; kÞ.
Full details are given in Ref. [26], where it is also shown that
this work cannot be substantially improved. We follow part
of the framework of Ref. [27], which conjectured our result
and gave a mean-field argument supporting it.
Definitions.—Let us give a more precise definition of

approximate unitary designs. First, we say a probability
measure μ on UðdÞ (the group of d × d unitary matrices) is
a unitary k design if for every monomial qðUÞ ¼
Ui1j1…UikjkU

�
m1n1…U�

mknk of a degree that is, at most, k,
in the entries of the unitaryUij and their complex conjugate
U�

nm, the average of qðUÞ over the Haar measure is the
same as the average over μ.
In turn, we say a measure μ on UðdÞ forms an

ε-approximate k design if

jEHaarqðUÞ − EμqðUÞj ≤ ε; ð1Þ
with EHaar, Eμ representing the expectations over the Haar
measure and μ, respectively. There are other definitions of
ε-approximate k designs [26], but they turn out to be
equivalent to the one above, up to a rescale of the
approximation factor [28].
We model random quantum circuits as random walks on

Uð2nÞ following Refs. [10,24]. In each step of the walk, an
index i is chosen uniformly at random from f1;…; n − 1g
and a unitary Ui;iþ1 drawn from the Haar measure on Uð4Þ
is applied to the two neighboring qubits i and iþ 1. This is
illustrated in Fig. 1. Other choices of random circuits are

possible (e.g., considering non-nearest-neighbor gates or
gates from different universal sets as in Ref. [29]), and
variants of our results will apply to them as well. However,
for concreteness we focus here on the model above. A
related model of random walk on the unitary (or orthogo-
nal) group is Kac’s random walk, extensively studied in
connection to statistical mechanics (see, e.g., Ref. [30]).
Our main result is the following.
Theorem 1.— Random circuits with O(nk9½nkþ

logð1=ϵÞ�) gates form ϵ-approximate k designs.
We comment briefly on these parameters. The n2 depend-

ence cannot be improved without changing the graph or
using nonrandom circuits since it corresponds toOðnÞ layers
of OðnÞ gates each, and with fewer layers the circuit would
not be able to destroy correlations between the end points of
the chain. The logð1=ϵÞ scaling also cannot be improved
because of the possibility of an unlucky choice of the random
gates. As for the k dependence, Proposition 8 of Ref. [26]
shows that the circuit size should growat least linearlywith k.
There is evidence for this scaling fromamean-field argument
[27] and numerical studies [31]. However, no previous work
could rule out the possibility that the scaling with k would
be exponential or evenworse. Our result is the first proof that
the circuit size scales polynomially with k. While the degree
of the polynomial is too large to use in practical applications,
we expect that a more careful analysis would reduce its
degree perhaps even to being linear in k.
Applications.—As k-wise independent distributions (or

classical k designs) have widespread applications, so too do
approximate unitary k designs [8,12,32].
Here, we briefly outline one application of our result to the

problem of understanding equilibration in closed quantum
dynamics. Consider the unitary time evolution of a system,
initially in a fixed state—say, all spins up j↑i⊗n. The total
state at any particular time is pure and hence does not appear
to equilibrate in any sense. However, a long sequence of
investigations, starting with von Neumann in 1929 [33], has
elucidated that the state does equilibrate if one imposes
constraints on the kind of observations possible [34–37]. For
instance, suppose that one only has access to measurements
on a few of the particles. Then it turns out that the building

FIG. 1. In our model of a random quantum circuit, there
are n qubits on a line, here arranged vertically. Time
proceeds from left to right. In each time step, two adjacent
qubits are chosen at random and a random two-qubit unitary
operator is applied to them.
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up of entanglement in the quantum state leads to local
equilibration of every small subset of particles, for almost all
times [36]. The limits of equilibration in closed quantum
dynamics is an interesting problem. What is the largest class
of observables for which equilibration holds? Our result on
unitary designs allows us to advance this question
significantly.
Define the circuit complexity of a measurement as the

minimum size of any circuit of two-qubit gates that
implements the measurement. Physical measurements
(e.g., measurement of magnetization or heat capacity or
even topological invariants) generally have low complexity.
We show that in generic quantum dynamics given by
random circuits (which model the case of generic evolu-
tions under time-dependent Hamiltonians), the system
equilibrates with respect to all measurements of low
complexity. A general quantum measurement with two
outcomes can be represented by operators M and I −M,
with 0 ≤ M ≤ I. We then have the following.
Corollary 2.— For every k ≥ 1, for sufficiently large

n’s and almost all random circuits U of sizeOðn11kþ9Þ on n
qubits, ����h↑⊗njU†MUj↑⊗ni − trðMÞ

2n

���� ≤ 2−n=4; ð2Þ

for every measurement fM; I −Mg of circuit complexity
less than nk.Proof sketch.— If M is fixed and U is Haar
uniform, then Eq. (2) holds with high probability; large
deviations are suppressed with a probability exponential in
the dimension, meaning expð−2ΩðnÞÞ. If instead U is drawn
from a t design then this probability becomes expð−tÞ. We
can approximate any low-complexity M with a measure-
ment drawn from a set roughly of the size expðnkÞ. Thus,
Eq. (2) holds (approximately) for all low-complexity M’s
with a probability ≤ expðnk − tÞ. For this to be ≪ 1 we
need t ≫ nk, which, according to Theorem 1, can be
achieved by a random circuit of length Oðn11kþ9Þ. The
full details of this proof are in Ref. [26].
One interpretation of Corollary 2 is that long random

quantum circuits appear to be Haar random when tested by
significantly shorter quantum circuits, even when the tester
has a full description of the random circuit. Thus it is
crucial that the tester be weaker than the circuit U being
tested; otherwise, the tester could apply the random circuit,
then apply U† and verify that the resulting dynamics are
trivial (say, by applying them to half of a maximally
entangled state).
Another interpretation of Corollary 2 is in the context of

quantum cryptography. It gives a procedure for so-called
quantum data hiding against a computationally bounded
adversary, meaning that information is present in a state but
cannot be measured without using a long quantum com-
putation (cf. Ref. [17]). Indeed, Corollary 2 shows that all
but a 2−ΩðnÞ fraction of states generated by circuits of size
Oðn11kþ9Þ cannot be distinguished from the maximally

mixed state with a bias larger than n−Ωð1Þ by any circuit of
size nk. So whether one has the particular pure state or the
maximally mixed state is hidden from any adversary that is
constrained to run in time nk.
One situation where the assumption is satisfied is in the

somewhat unrealistic setting when the adversary has less
computational power than the honest parties. A more
realistic situation is when the time it takes the adversary
to decode the message is longer than the time is takes to
send the message from one honest party to the other. In this
case the honest parties can abort the protocol if the message
is not delivered in time.Proof overview.— The remainder
of the Letter will give a high-level description of the proof
of Theorem 1. A full proof is in Ref. [26]. The proof is
based on an interplay of techniques from quantum many-
body theory [38], representation theory [39], and the theory
of Markov chains [30], and we believe similar ideas might
find further applications elsewhere.
Expressing the problem in terms of spectral properties of

matrices: Classical case.—As a warm-up to understanding
the properties of our random circuits, consider the classical
analogue. If C is a t-gate reversible classical circuit acting
on n bits, then we can think of it as a permutation matrix of
the size 2n. Since mixing over the set of all permutations
requires exponentially long circuits, we instead examine
the behavior of the moments of the circuit. To represent the
circuit’s kth moments, we can examine its action on sets of
k inputs, each of which are n-bit strings. Using the tensor
product, this action can be also be described as a matrix:
C⊗k, which maps ji1i ⊗ … ⊗ jiki to Cji1i ⊗ � � � ⊗ Cjiki.
The advantage of this representation is that the average over
t-step circuits of C⊗k (call it At;k) is simply the tth power of
the average over one-step circuits A1;k; i.e., At;k ¼ At

1;k.
Moreover, if the gate set is universal, then At;k will
approach the average over all permutations as t → ∞.
Determining the rate of convergence now reduces to an

eigenvalue problem. Since A∞;k ¼ A∞
1;k, it must have only

eigenvalues 0 or 1. The 1 eigenspace corresponds to the
degrees of freedom that are preserved when the same circuit
is applied to each element of i1;…; ik, e.g., information
about whether i1 ¼ i2 or i1 ≠ i2. When the set of gates is
universal, the matrix A1;k has the same eigenspace with
eigenvalue one and has all other eigenvalues smaller than
one (i.e., there are no additional “constants of motion”).
Thus, everything orthogonal to this subspace will decay to
0 as t → ∞ at a rate controlled by the eigenvalues of A1;k.
Our distance after t steps to the average over random

permutations can be quantified by ∥At;k − A∞;k∥. Because
of the above arguments, this is given just by ð1 − δÞt, where
1 − δ is the second-largest eigenvalue of A1;k (disregarding
multiplicity). This is the source of the exponential con-
vergence typically exhibited by Markov chains on discrete
state spaces. As a result, error ϵ is achieved by taking circuit
length t ≥ δ−1 log 1

ϵ. By proving [5,6] that δ ≥ 1=polyðk; nÞ,
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it follows that n-bit circuits of length polyðk; nÞ have kth
moments that approximate those of random permutations.
Expressing the problem in terms of spectral properties of

matrices: Quantum case.—In the quantum case, the picture
is similar [27] if we replace the action on n-bit strings with
the action on 2n-dimensional density matrices. The kth
moments of this action can be expressed [27,40] in terms of
the matrix

Gμ ¼
Z
Uð2nÞ

U⊗k ⊗ ðU�Þ⊗kμðdUÞ; ð3Þ

where μ is a distribution over unitary transformations of n
qubits. This matrix can also be thought of as the matrix
form of the map that sends ρ to

R
U⊗kρðU†Þ⊗kμðdUÞ. If μ

is taken to be of Haar measure, we obtain an analogue of
A∞;k. To obtain an analogue of A1;k, one sets μ ¼ ν≡ νn,
with νn representing an average over n − 1 choices of pairs
of neighboring qubits and over a random choice of a two-
qubit gate applied to those qubits. As in the classical case,
GHaar is the projector onto the 1 eigenspace of Gν, which,
we will argue below, has the dimension k!. Let 1 − δ denote
the next largest eigenvalue of Gν. Then we again have that

∥ðGνÞt −GHaar∥ ¼ ð1 − δÞt; ð4Þ

so the length of the circuit ensuring ∥ðGνÞt −GHaar∥ ≤ ϵ is
given by

t ¼ δðn; kÞ−1 log 1
ϵ
; ð5Þ

where we have made explicit the dependence of δ on n, k.
Now, our main result is the following estimate:

δðn; kÞ ≥ Ω
�

1

nk8.1 log2ðkÞ
�
; ð6Þ

which implies that a random circuit of length t ¼
O(nk8.1 log2ðkÞ½nk logðdÞ þ logð1=ϵÞ�) approximates up
to ϵ the kth moment of random unitary, thus proving
Theorem 1.
Connection to many-body theory.—The matrix Gν can

be expressed in terms of a local Hamiltonian, bringing the
problem within the scope of quantum many-body theory.
The quantity δðn; kÞ that determines circuit length in our
case was shown in Refs. [23,24,27] to be directly related to
the spectral gap of some Hamiltonian consisting of nearest-
neighbor interactions between n (D ¼ 4k)-dimensional
systems on a line. This Hamiltonian does not correspond
to a physical system, but tools from many-body theory still
apply and can help evaluate the gap.
To construct the Hamiltonian, note that our random

circuit ν consists of picking with probability ð1=n − 1Þ a
random gate on two adjacent qubits. Thus, Gν ¼ ð1=n−
1ÞPn−1

i¼1 Pi;iþ1, where Pi;iþ1≔
R
Uð4Þ ðUi;iþ1Þ⊗k;kμHaarðdUÞ

and Ui;iþ1 acts on the ith and (iþ 1)th qubit. Define

Hn;k≔ðn − 1ÞðI − GνÞ ¼
Xn−1
i¼1

hi;iþ1 ð7Þ

with the local terms hi;iþ1≔I − Pi;iþ1, where I is the identity
operator. It can then be shown that the “energy” of a ground
state of the Hamiltonian is zero (corresponding to the 1
eigenspace of Gν), while that of the first excited level is
ðn − 1Þδðn; kÞ. In other words, the spectral gap of Hn;k

[denoted by ΔðHn;kÞ] is directly related to the difference of
the largest and second-largest eigenvalue of Gν, according
to δðn; kÞ ¼ ðΔðHn;kÞ=n − 1Þ. Thus, to determine the length
of the random circuit, which approximates the k design, it
suffices to lower bound the spectral gap of Hn;k.
Bounding the spectral gap.—Despite decades of

research on many-body systems, the evaluation of spectral
gaps of local Hamiltonians is often a formidable task.
Fortunately, our Hamiltonian has a nice feature of being
nonfrustrated: ground states of the total Hamiltonian are
at the same time ground states of its local constituents.
For such Hamiltonians, Nachtergaele [38] provided a
sufficient condition for existence of a constant gap (in
the number of qubits n), together with an estimate for the
gap. Nachtergaele’s criterion is given in terms of ground
subspaces of Hamiltonians consisting of various numbers
of systems m ≤ n. One finds that the ground space of our
Hamiltonian is spanned by the k! product vectors jψσi⊗n,
labeled by k-element permutations σ. This originates from
the fact that the only operators which commute with U⊗k,
where U is an arbitrary unitary transformation, are linear
combinations of operators that permute systems (the
vectors are actually isomorphic to those operators).
Were the jψσi⊗n strictly orthogonal, the Nachtergaele
criterion would apply immediately, but this does not hold
here. Yet, by use of group representation theory, we obtain
that the vectors jψσi⊗n have sufficiently small overlaps
(see the Supplemental Material [41]) to enable us to apply
the criterion and obtain a tight gap.
As a result, we obtain that the spectral gap of a

Hamiltonian over n qubits for any n can be bounded by
the gap of Hamiltonian of a fixed number of qubits,
depending only on the moment k:
Lemma 1.— For all integers n, k with n ≥

⌈2.5 logð4kÞ⌉,

ΔðHn;kÞ ≥
ΔðH⌈2.5 logð4kÞ⌉;kÞ
4⌈2.5 logð4kÞ⌉ ; ð8Þ

where ⌈x⌉ denotes the least integer no smaller than x.
It remains only to control the gap of the Hamiltonian for

systems with O( logðkÞ) qubits. Here, since we are con-
cerned with a relatively small number of qubits, it suffices
to establish that random circuits on m qubits mix after a
number of steps that is exponential in m. We prove this in
Ref. [26] using the path-coupling method in Ref. [30]. If
m ¼ O( logðkÞ), then this means a number of steps that is
polynomial in k. Translating these mixing bounds back
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into a statement about the gap of H, we find that
ΔðHOðlog kÞ;kÞ ≥ 1=polyðkÞ. This completes the proof of
Theorem 1.
Discussion.—Our main result shows that Oðn2k10Þ ran-

dom nearest-neighbor unitary interactions yield a distribu-
tion over unitaries that approximately matches the first k
moments of the Haar measure. The dependence on n is
approximately optimal for one dimension; indeed, we can
think of it (for a fixed k) as OðnÞ rounds of parallel nearest-
neighbor interactions. Since it takes at least this much time
for information to propagate along a line of n qubits, this n
dependence cannot be improved. On the other hand, we
did not try hard to reduce the degree of the polynomial in k
and it may even be that the number of gates required is
independent of k, as in Ref. [42]. Another open question is
whether the n dependence could be improved for better
connected geometries, e.g., nearest-neighbor gates in higher-
dimensional lattices or gates with arbitrary connectivity.
Theorem 1 shows that k designs can be implemented

efficiently on a quantum computer and also describes a
plausible natural process that can give rise to them. Other
work has studied open systems with nonunitary dynamics
[43] and closed systems with Hamiltonian dynamics [44].
Our model differs from both of these but could plausibly
arise from a randomly time-varying Hamiltonian. Still, a
major challenge left open is to understand the conditions
under which realistic physical systems thermalize.
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