
Achievable Polarization for Heat-Bath Algorithmic Cooling

Nayeli Azucena Rodríguez-Briones1,2 and Raymond Laflamme1,2,3,4
1Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

2Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
3Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada

4Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
(Received 18 December 2014; revised manuscript received 2 April 2015; published 25 April 2016)

Pure quantum states play a central role in applications of quantum information, both as initial states for
quantum algorithms and as resources for quantum error correction. Preparation of highly pure states that
satisfy the threshold for quantum error correction remains a challenge, not only for ensemble
implementations like NMR or ESR but also for other technologies. Heat-bath algorithmic cooling is a
method to increase the purity of a set of qubits coupled to a bath. We investigated the achievable
polarization by analyzing the limit when no more entropy can be extracted from the system. In particular,
we give an analytic form for the maximum polarization achievable for the case when the initial state of the
qubits is totally mixed, and the corresponding steady state of the whole system. It is, however, possible to
reach higher polarization while starting with certain states; thus, our result provides an achievable bound.
We also give the number of steps needed to get a specific required polarization.
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Introduction.—Purification of quantum states is essential
for applications of quantum information science, not only
for many quantum algorithms but also as a resource for
quantum error correction. The need to find a scalable way
to reach approximate pure states is a challenge for many
quantum computation modalities, especially the ones that
rely on ensembles such as NMR or ESR [1].
A potential solution is algorithmic cooling (AC), a

protocol which purifies qubits by removing entropy of a
subset of them, at the expense of increasing the entropy of
others [2,3]. An explicit way to implement this idea in
ensemble quantum computers was given by Schulman et al.
[4]. They showed that it is possible to reach polarization of
order unity using only a number of qubits which is
polynomial in the initial polarization. This idea was
improved by adding contact with a heat bath to extract
entropy from the system [5], a process known as heat-bath
algorithmic cooling (HBAC). Based on this work, many
cooling algorithms have been designed [6–11]. HBAC is
not only of theoretical interest, experiments have already
demonstrated an improvement in polarization using this
protocol with a few qubits [12–18], where a few rounds of
HBAC were reached, and some studies have even included
the impact of noise [19].
Through numerical simulations, Moussa [7] and

Schulman et al. [8] observed that if the polarization of
the bath (ϵb) is much smaller than 2−n, where n is the
number of qubits used, the asymptotic polarization reached
will be ∼2n−2ϵb, but when ϵb is greater than 2−n, a
polarization of order one can be reached. Inspired also
by the work of Patange [20], who investigated the use of
algorithmic cooling on spins bigger than 1

2
(using NV center

where the defect has an effective spin 1), we investigate the
case of cooling a qubit using a general spin l, and extra
qubits which get contact with a bath. We found the
asymptotic limit by solving the evolution equation with
the results supported by numerical simulation [7]. A proof
has been reported by Raeisi and Mosca [21].
In this Letter we give the analytic result for the asymptotic

polarization that can be reached when the initial state of the
quantum computer is in the totally mixed state. This gives an
achievable bound as we can always efficiently turn a state
into the maximally mixed one, while some other initial states
do lead to higher polarizations. We recover the limit of low
polarization observed by Moussa and Schulman et al. We
also show how a polarization of order one can be reached as
a function of the number of qubits. We compare the
Schulman’s upper bound of the maximum probability of
any basis state [10] with our analytical bound. Finally, we
give the number of rounds of compression and cooling
needed to get certain polarization.
HBAC purifies qubits by applying alternating rounds of

entropy compression and pumping entropy into a thermal
bath of partially polarized qubits, as explained below.
The system consists of a string of qubits: one qubit (spin

1=2, also called the target qubit) which is going to be
cooled; one qudit (called the scratch system, which can be a
spin l or a string of qubits) which aids in the entropy
compression; and m reset qubits that can be brought into
thermal contact with a heat bath of polarization ϵb. Having
the spin l is equivalent to having n0 qubits if the dimension
of their Hilbert spaces is the same, i.e., if d ¼ 2lþ 1 ¼ 2n

0
.

We will also refer to the target qubit and the scratch qudit as
the computational qubits (Fig. 1).
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The idea of HBAC is to first redistribute the entropy
among the string of qubits applying an entropy compres-
sion operation U. This operation concentrates the entropy
in the reset qubits of the system by extracting entropy of the
computational qubits. This process results in the cooling of
the computational qubits while warming the reset qubits.
The second step is to refresh the system using the heat bath
for removing entropy.
For our study, we used a HBAC algorithm called the

partner pairing algorithm (PPA), which was invented by
Schulman et al. [8]. This protocol gives the optimal
physical cooling of HBAC, in terms of entropy extraction,
under the assumption that the refresh step rethermalizes the
reset qubits with the heat bath [8,10]. In the PPA, the
entropy compression operation U makes a descending sort
of the diagonal elements of the system’s density matrix. In
the refresh step, the m reset qubits are brought into thermal
contact with the bath to be refreshed. This step is equivalent
to tracing over the reset qubits, and replacing them with
qubits from the heat bath, cooling the qubit system. We also
assume that the heat bath has large heat capacity and that
the action of qubit-bath interaction on the bath temperature
is negligible.
The total effect of applying these two steps on a system

with state ρ can be expressed as follows:

ρ !compression
ρ0 ¼ UρU†; ð1Þ

ρ0 !refreshρ00 ¼ Trmqubits
ðρ0Þ ⊗ ρ⊗m

ϵb ; ð2Þ

where ρϵb ¼ 1
2

�
1þ ϵb 0

0 1 − ϵb

�
is the state of a qubit

from the bath, and ϵb is the heat-bath polarization (some
authors, such as Schulman et al. [10], use ϵ ¼ arctanhϵb as
polarization).
An interesting question is what is the asymptotic

achievable cooling with this method, and how many

iterations of the HBAC steps would be needed to obtain
a certain cooling, i.e., a certain value of polarization.
Cooling limit.—The cooling limit corresponds to the

moment at which it is not possible to continue extracting
entropy from the system, i.e., when the state of the qubit
system is not changed by the compression and refresh
steps. The system achieves this limit asymptotically,
converging to a steady state where the following condition
holds:

ρ ¼ ρ00: ð3Þ

The state of the computational qubits, ρcom ¼ Trmqubits
ðρÞ,

can be expressed as

diagðρcomÞ ¼ ðA1; A2; A3;…; A2dÞ; ð4Þ

where diagðρÞ is the vector of the diagonal elements of ρ.
From this and Eq. (2), the state of the qubit system after a
HBAC iteration will be described by

diagðρ00Þ ¼ ðA1; A2;…; A2dÞ ⊗
1

2m
ð1þ ϵ; 1 − ϵÞ⊗m: ð5Þ

In the cooling limit there is no operation that can
compress any further the entropy of the computational
qubits, or equivalently, the diagonal elements of ρ00 are
already sorted in decreasing order. This will happen when
we have the condition

Aið1 − ϵbÞm ≥ Aiþ1ð1þ ϵbÞm; ð6Þ

for i ¼ 1; 2; 3;…; 2d − 1 (see Supplemental Material [22]
for details). When this equation is satisfied, the entropy of
the reset qubits will not increase anymore after compres-
sion and thus contact with the bath will not cool them.
Thus, HBAC iterations will not modify the state anymore,
leading to (3).
Maximally mixed initial state.—If we start with a

maximally mixed state, it is possible to show that (see
Supplemental Material [22], a proof can be found in [21])

At
ið1 − ϵbÞm ≤ At

iþ1ð1þ ϵbÞm; ð7Þ

where t labels the number of HBAC iterations. This is true
for the initial step, as Ai ¼ ð2dÞ−1 for all i at t ¼ 0, but it
turns out that it remains true for all subsequent iterations.
It is also possible to show that at each step the

polarization of the target qubit never decreases, while
the entropy of the reset qubits always increases beyond
the one from the bath at each entropy compression step.
Thus, the reset qubits always pump entropy out of the
system into the bath, converging to a limit.
Comparing Eqs. (6) and (7) indicates that the asymptotic

state of the computational qubits can only go towards the
equality

FIG. 1. HBAC can cool the target qubit by compressing entropy
into m reset qubits and a d-dimensional spin l (or a string of
qubits of Hilbert space of dimension d); then, HBAC pumps
entropy from the qubit system into a heat bath by refreshing them
reset qubits.
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A∞
i ð1 − ϵbÞm ¼ A∞

iþ1ð1þ ϵbÞm; ð8Þ

for all i ¼ 1; 2; 3;…; 2d − 1.
From (8) and the property TrðρcomÞ ¼ 1, it is possible

to find A∞
i ¼ ½ð1 −QÞ=ð1 −Q2dÞ�Qi−1, where

Q ¼ ½ð1 − ϵbÞ=ð1þ ϵbÞ�m. This result gives the exact
solution of the steady state of the computational qubits
~ρcom for all values of the bath polarization:

diagð~ρcomÞ ¼ A∞
1 ð1; Q;Q2;…; Q2d−1Þ: ð9Þ

See Supplemental Material [22] for details.
Asymptotic polarization.—From the steady state

[Eq. (9)], the asymptotic polarization of the target qubit is

ϵ∞1 ¼ ð1þ ϵbÞmd − ð1 − ϵbÞmd

ð1þ ϵbÞmd þ ð1 − ϵbÞmd : ð10Þ

The corresponding temperature of the target qubit will be
Tsteady ¼ ð1=mdÞTbðΔEt=ΔErÞ (d ¼ 2n

0
when the scratch

qudit is a string of n0 qubits), here Tb is the temperature of
the bath, and ΔEt and ΔEr are the energy gaps between the
two energy levels of the target qubit, and the reset qubits,
respectively. Our results agree with the third law of
thermodynamics [23,24].
For the case of using a string of qubits as the scratch qudit,

the maximum achievable polarization of the jth qubit will

be ϵðjÞmax ¼ ½ð1þ ϵbÞm2j−1 − ð1 − ϵbÞm2j−1 �=½ð1þ ϵbÞm2j−1þ
ð1 − ϵbÞm2j−1 � (numbered from right to left, Fig. 1).
In the limit for low bath polarization, ϵb ≪ 1=md, the

achievable asymptotic polarization is proportional to the
dimension of the Hilbert space of the scratch qudit (or n0
qubits), i.e., ϵ∞1 ≈mdϵbð¼ m2n

0
ϵbÞ. As the value of ϵb

increases beyond 1=md, we observe a transition for the
asymptotic polarization. This is shown in Fig. 2, as a
function of the bath polarization for a different number of
qubits, using Eq. (10). We can observe the transition noted
by [7] and [8] at ϵb ∼ 2−n, for m ¼ 1, agreeing with
simulations.
In order to see how ϵ∞1 approaches 1, we use

Δmax ¼ 1 − ϵ∞1 , and eq (10). Then,

Δmax ¼
2

emd ln ½ð1þϵbÞ=ð1−ϵbÞ� þ 1
¼ 2

em2n
0
ln ½ð1þϵbÞ=ð1−ϵbÞ� þ 1

:

ð11Þ
This expression shows that the asymptotic polarization
goes to 1 doubly exponentially in the number of qubits n0
(or exponential as a function of the size of the Hilbert space
d). In Fig. 2, we show ϵ∞1 as a function of ϵb for different
values of d, with m ¼ 1.
The asymptotic polarization ϵ∞1 was obtained assuming

the system qubits started in the completely mixed state. The
same asymptotic polarization would be obtained if we start
with a different initial state that, nevertheless, obeys Eq. (7).

Numerical simulation indicates that this could also happen
with some initial states not obeying Eq. (7). But we can also
find explicit examples of initial states that lead to asymp-
totic polarizations that are higher than Eq. (10). As any state
can be efficiently maximally randomized, it is always
possible to reach the polarization given Eq. (10) and maybe
do better if the initial state is different.
Schulman’s physical-limit theorem.—The steady state,

Eq. (9), is consistent with the limits of HBAC given by the
theorem of Schulman et al. [10]. Their theorem provides an
upper bound of the probability of having any basis state,
concluding that no heat-bath method can increase that
probability from its initial value 2−n to more than
minf2−neϵ2n−1 ; 1g. Where ϵ is related to the polarization
of the heat bath as ϵb ¼ tanh ϵ, and n is the total number of

FIG. 2. Asymptotic achievable polarization for the target qubit.
This polarization increases double exponentially in the number of
qubits as the scratch qudit n0. The dots are located at the point of
ϵ∞1 which corresponds to the ϵb ¼ 1=md, where the transition can
be observed, for d ¼ 2, 4, 8, 16, 32, and 64, and m ¼ 1. (For ϵb
smaller than that value, ϵ∞1 is linear in ϵb.)

FIG. 3. Upper limit of the probability of any basis state for the
total n qubit system (n ¼ n0 þ 2: n0 þ 1 computational qubits and
one reset qubit). The dashed line corresponds to the Schulman’s
upper bound and the thick line to the exact asymptotic proba-
bility. Orange represents n ¼ 3, blue represents n ¼ 4, and green
represents n ¼ 5.
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qubits (n ¼ n0 þ 2: n0 þ 1 computational qubits and one
reset qubit).
We improved that theorem by finding the corresponding

exact maximum probability pmax. pmax is given by the
probabilityofhaving thebasis state j00:::0i at the cooling limit:
pmax ¼ A1ð1þ ϵbÞ=2 [from Eq. (9) and ρ ¼ ~ρcom ⊗ ρϵb ].
That expression can be written as a function of n and ϵb as
follows pmax ¼ ϵb=f1 − ½ð1 − ϵbÞ=ð1þ ϵbÞ�2n−1g.
Figure 3 shows both the upper bound proposed by

Schulman (dashed lines) and the asymptotic value obtained
here (thick lines), for different values of n. We can see that
the bound is very close to the exact solution for small
values of ϵb, but differs for large values of ϵb.
Number of steps needed to get ϵ ¼ ϵ∞1 − δ.—We calcu-

lated the number of steps required to get a certain
polarization for the 3 qubit case (m ¼ 1, d ¼ 2). For this,
we studied the polarization evolution after each step of the
PPA method on the system, starting from the total mixed
state. The required quantum circuit to perform the PPA
method is shown in Fig. 4.
Consider that the polarization of the first qubit is ϵt after

the tth iteration. Applying two more iterations, which
corresponds to the 3 qubit round in Fig. 4, the polarization
of the target qubit increases from ϵt to ϵtþ2 as follows:

ϵtþ2 ¼ 2abϵt þ ϵb; ð12Þ

where a ¼ ½ð1þ ϵbÞ=2� and b ¼ ½ð1 − ϵbÞ=2�.
Let t start from 0, then ϵ0 ¼ ϵb after the first iteration.

From Eq. (12), the polarization after applying j 3 qubit
rounds can be written as

ϵt¼2j ¼ ϵ∞1 − qjðϵ∞1 − ϵbÞ; ð13Þ

where q ¼ ½ð1 − ϵ2bÞ=2�. Using (10) with d ¼ 2, we have
that the corresponding asymptotic polarization
ϵ∞1 ¼ ½2ϵb=ð1þ ϵ2bÞ�. From this equation we can find the
number of steps needed to get to ϵ ¼ ϵ∞1 − δ,

Nðδ; ϵbÞ ¼ 2j ¼ 2
log ½δ=ðϵ∞1 − ϵbÞ�

log q
: ð14Þ

The upper bound on the number of steps required to get
polarization ϵh;δ < ϵmax for the cases of a string of n qubits
(n0 ¼ n − 2, m ¼ 1) is

Nupper bound ¼
Yk¼½n0=2�

k¼1

Nðδk; ϵkÞ; ð15Þ

where ϵmax ¼ f½ð1þ ϵbÞd=2 − ð1 − ϵbÞd=2�=½ð1þ ϵbÞd=2þ
ð1 − ϵbÞd=2�g; ϵk≔fðϵk−1Þ − δk; ϵh;δ ¼ ϵh, with h ¼
½n0=2� (the integer part of n0=2); fðϵÞ ¼ ½2ϵ=ð1þ ϵ2Þ�;
N(δ; ϵ) ¼ 2ðlogfδ=½fðϵbÞ − ϵb�g= log qÞ; and ϵ0 ¼ ϵb.
(More details are in the Supplemental Material [22].)
Figure 5 shows numerical simulations of the number of

steps as a function of δrel ¼ ½ðϵ∞1 − ϵÞ=ϵ∞1 � ¼ δ=ϵ∞1 . The
simulations are consistent with the upper bound of the
number of steps and with the exact solution for the case
of 3 qubits.
Conclusion.—HBAC is a process to purify a number of

qubits by removing entropy using extra qubits and contact
with a bath. We presented an analytical solution for the
steady state which corresponds to the cooling limit of a
string of qubits starting with the totally mixed state which
consists of one qubit with a number of ancilla qubits (or a
spin l) and another set of m qubits that can be put into
contact with a bath with polarization ϵb. From this formula
we can understand the transition of behavior of the
asymptotic polarization at 1=md. Below this value, ϵ∞1 ∼
mdϵb and above it will reach order unity double exponen-
tially with the number of scratch qubits. This behavior will
remain true for other initial states as long as they obey
conditions (7). We can think of our derived asymptotic
polarization as the minimum polarization limit as it is
always possible to efficiently randomized a state so that

FIG. 4. Quantum circuit for the PPA method on a system of 3
qubits starting in the total mixed state. In the circuit diagram, the
target, the scratch, and the reset qubits are denoted T, S, and R,
respectively; the dashed line corresponds to the heat bath and r
stands for the refresh operation. The figure shows only the first
five iterations of the circuit (an iteration consists of one refresh
step plus one compression step), subsequent iterations are just the
repetition of the iterations 1 and 2 (a 3 qubit round).

FIG. 5. The PPA steps required to have polarization ϵ ¼ ϵ∞1 − δ
as a function of δ=ϵ∞1 , for d ¼ 2, 3, 4, 5, and 6.
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value can always be asymptotically reached. If conditions
(7) are not obeyed, it may be possible to reach higher
polarization. Finally, we obtained the number of steps
required to reach a given polarization for a specific number
of qubits [25].
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