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The collective diffusion of dense fluids in spatial confinement is studied by combining high-energy
(21 keV) x-ray photon correlation spectroscopy and small-angle x-ray scattering from colloid-filled
microfluidic channels. We find the structural relaxation in confinement to be slower compared to the bulk.
The collective dynamics is wave vector dependent, akin to the de Gennes narrowing typically observed in
bulk fluids. However, in stark contrast to the bulk, the structure factor and de Gennes narrowing in
confinement are anisotropic. These experimental observations are essential in order to develop a
microscopic theoretical description of collective diffusion of dense fluids in confined geometries.
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Dense fluids in narrow spatial confinement exhibit
complex microscopic ordering, due to competing packing
constraints imposed by the confining surfaces and the other
particles in the system [1]. As a result confinement alters
the fluids’ dynamic properties [2], and is thus highly
relevant in a wide range of scientific phenomena and
technological applications, including water transport in
molecular sieves, the hindered motion of colloidal dis-
persions in porous matrices, the glass transition in thin
films, lubrication, and various micro- and nanofluidic
applications. State-of-the-art experiments [3] and simula-
tions [4] have shown that packing constraints in confined
geometries lead to position-dependent diffusion of dense
fluids, thereby highlighting the close connection between
microscopic structure and dynamics. Correlations
between structural quantities such as the excess entropy,
on the one hand, and dynamic properties such as single-
particle diffusion [5] or structural relaxation [6], on the
other hand, have also been reported. However, nanoscopi-
cally confined dense fluids exhibit complex dynamical
behavior [7], and a conceptually simple mechanistic
picture in terms of the microscopic structure is still
missing.
An established description of microscopic dynamics in

the bulk is provided via a phenomenon known as de Gennes
narrowing [8], according to which the wave vector depen-
dent collective diffusion coefficient DðqÞ scales as the
inverse of the structure factor SðqÞ. In essence, density
fluctuations with a wave vector q corresponding to a

maximum in the structure factor have a low free energy
cost and thus decay slowly, providing a straightforward
physical connection between microscopic structure and
dynamics. This scheme has been used to analyze collective
diffusion in bulk systems ranging from colloidal disper-
sions [9] to glass-forming silicates [10], and has even been
successfully applied to the relative motion of protein
domains [11]. However, its validity in confinement is yet
to be demonstrated, whether experimentally, theoretically,
or by simulations. Spatial confinement induces anisotropy
in the fluid’s pair correlations [12] and the ensuing structure
factor [13]. If de Gennes narrowing holds in confinement,
then one would observe anisotropic wave vector dependent
collective diffusion.
In this Letter, we study the connection between the

microscopic structure and dynamics of dense fluids con-
fined between planar walls at close separation, i.e., in a
narrow slit geometry. We have recently developed a unique
scheme to experimentally determine anisotropic structure
factors of confined fluids, based on small-angle x-ray
scattering (SAXS) from colloid-filled micro- or nanofluidic
channel arrays [14], in semiquantitative agreement with
ab initio theoretical predictions [15,16]. Here, we extend
the methodology for simultaneous determination of the
static structure factor and the wave vector dependent
collective diffusion coefficient of a charge-stabilized col-
loidal dispersion in narrow confinement, by carrying
out high-energy SAXS and x-ray photon correlation
spectroscopy (XPCS) experiments. We provide the first
observation of anisotropic de Gennes narrowing in con-
fined fluids, with the structural relaxation being highly
anisotropic and significantly slower compared to the bulk.
These experimental findings, which establish a connection
between structure and dynamics at the fundamental level of
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pair densities, are crucial for the development of a micro-
scopic theory of dynamics in dense confined fluids.
Following Refs. [14–16], we used a colloidal dispersion

confined in a specifically designed microfluidic channel
array as a model for confined fluids. The colloid consisted
of charge-stabilized spherical silica particles dispersed in
ethylene glycol, with a particle volume fraction of
ϕ ¼ 0.168 in the bulk. The average diameter of the
particles was σ ¼ 182 nm and the polydispersity
Δσ=σ ¼ 1.5%, as determined by SAXS from a dilute bulk
dispersion. Details on the synthesis of the colloidal
dispersion can be found elsewhere [17].
The microfluidic container, in turn, consisted of a

periodic array of one-dimensional channels. The channel
array was made into a 300 μm thick silicon wafer by
electron-beam lithography and KOH etching following
Ref. [18]. It had a period of 2 μm, a depth of ≈18 μm,
and a channel width of H ¼ 490 nm (i.e., H ≈ 2.7σ), as
determined by scanning electron microscopy. The resulting
confining walls were structureless on the length scales
relevant for the colloidal dispersion, facilitating studies on
the connection between microscopic structure and dynam-
ics. We also prepared space for a bulk fluid reservoir,
allowing us to collect bulk data from the same sample cell.
Finally, we covered the channel array by a 500 μm thick
glass plate in order to prevent evaporation of the solvent
and to facilitate attachment of syringes for filling the fluid,
resulting in a 3 μm thin fluid film between the channel
array and the glass cover.
We carried out the combinedXPCS and SAXS experiment

at beam line ID10 of the European Synchrotron Radiation
Facility (ESRF). Our key technical advance is the use of
high-energy incident x rays, therebyminimizingabsorption in
the beam path and allowing the XPCS experiment on the
colloidal dispersion sandwiched between the silicon wafer
and the glass cover. The incident x-ray beam had an energy
of ℏω ¼ 21 keV, and a size of 10 × 10 μm2 at the sample
position, and impinged parallel to the confining walls. To
maximize the intensity the x-ray beam was focused onto
the sample plane and an evacuated flight tube was placed
between the sample and the detector to minimize the back-
ground from air scattering. Scattered x rays were collected in
transmission mode 5.3 m behind the sample in a twofold
manner as follows. First, we obtained an overview of the
static structure using the two-dimensional single-photon-
counting CdTe MAXIPIX detector (256 × 768 pixels with
a size of 55 × 55 μm2 each) [19]. Then, we collected static
SAXS and dynamic XPCS data simultaneously, in selected
scattering vector directions with respect to the confining
channels, using a 0.1 × 0.1 mm2 slit opening in front of a
point detector, a Cyberstar scintillation counter connected to a
Flex hardware correlator. The experiment was carried out at
room temperature.
First, we discuss the static SAXS intensity IðqÞ obtained

from the confined fluid, shown in Fig. 1(a). These data, like

all data presented in this Letter, have been verified in
several repeat measurements. The data are proportional to
the anisotropic structure factor [21], SðqÞ ¼ 1þ
1
N

R R
nðrÞnðr0Þhðr; r0Þeiq·ðr−r0Þdrdr0, where q denotes the

wave or scattering vector, N is the total number of particles,
nðrÞ is the number density profile across the confining slit,
hðr; r0Þ is the pair correlation function, and the integration
is carried out over particle positions r and r0. For the present
case of a fluid in slit confinement, SðqÞ is essentially given
by the Fourier transform of the pair density correlation
nðrÞhðr; r0Þ, ensemble averaged over particle positions
across the confining channel (for illustrative real-space
representations, see Ref. [13]). In stark contrast to isotropic
bulk fluids, the SAXS intensity obtained from the confined
fluid is strongly anisotropic, directly demonstrating the
strong anisotropy in the structure factor and the underlying
pair correlations.
Structural relaxation in the fluid was probed by XPCS,

which measures the intensity autocorrelation function

g2ðq; tÞ ¼
hIðq; t0ÞIðq; t0 þ tÞit0

hIðq; t0Þit0hIðq; t0 þ tÞit0
; ð1Þ

where h� � �it0 denotes a temporal average over all times t0
[22]. The g2ðq; tÞ curves obtained from both the confined
and the bulk fluid at a scattering vector magnitude of
q ¼ 0.034 nm−1 are presented in Fig. 1(b), the former in the
nonparallel direction as defined in Fig. 1(a). These corre-
lation functions differ in two ways. First, the dynamics is
significantly slower in confinement compared to the bulk at
this particular scattering vector. Second, the shape of the
correlation function in confinement is stretched, in contrast
to the bulk.
The intensity autocorrelation functions of Fig. 1(b) are

related to the fluids’ density fluctuations via the Siegert
relation g2ðq; tÞ ¼ 1þ γjfðq; tÞj2, where γ denotes the
experimental contrast and fðq; tÞ denotes the normalized
intermediate scattering function [22]. For quantitative
analysis we fit the correlation functions with the Siegert
relation using the phenomenological Kohlrausch-Williams-
Watts exponential expression fðq; tÞ ¼ exp f−½t=τðqÞ�βg,
which is commonly applied to describe dynamics in
disordered systems. Here, τðqÞ denotes the wave vector
dependent relaxation time and 0 < β ≤ 2 denotes the shape
factor with β < 1 corresponding to the stretched correlation
function. From the fits of the g2ðq; tÞ curves, we obtain a
nearly constant β ≈ 0.95 for the bulk, ≈0.88 for the fluid
film, as well as ≈0.72, ≈0.70, and ≈0.78 for the confined
fluid in the diagonal, nonparallel, and parallel directions
[see Fig. 1(a) for definitions]. To account for the stretching
we consider throughout this study an average relaxation
time hτðqÞi≡ R∞

0 fðq; tÞdt ¼ τðqÞβ−1Γ�ðβ−1Þ, where Γ�
denotes the gamma function.
Stretching of the correlation function indicates a dis-

tribution of relaxation times coming either from the sample
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itself or as a result of the experimental conditions. Because
our sample contains monodisperse particles, we attribute
the weak stretching in the bulk (β ≈ 0.95) to the averaging
of relaxation times over a large slit opening
(0.1 × 0.1 mm2) in front of the point detector. The data
from the confined fluid (18 μm thick) also contain a
contribution from the 3 μm thick fluid film on top of the
channel array [23], which could explain the stronger
stretching (β ≈ 0.75) compared to the bulk. However, the
enhanced stretching observed in the film (β ≈ 0.88) indi-
cates that confinement indeed induces stretched dynamics
in our fluid. Our present experimental design does not

allow XPCS experiments on the confined fluid alone, and
in the future a new cell geometry will be envisaged to study
this effect. Importantly, the contribution from the fluid film
does not depend on the azimuthal angle, and cannot
therefore explain the main observation in our study—
anisotropic de Gennes narrowing.
Having introduced the static structure factor SðqÞ and the

wave vector dependent relaxation time τðqÞ, we can now
address the main question of the present study—how does
the microscopic structure of the confined fluid affect its
collective diffusion? For this purpose we present in
Fig. 2(a) the structure factor SðqÞ, as obtained by dividing
the SAXS intensity IðqÞ by the form factor of a dilute
dispersion. The data are shown for four different cases: the
confined fluid in the diagonal, nonparallel, and parallel
directions as well as the bulk fluid. We note two interesting
features in the data. First, the peak positions and intensities
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FIG. 1. (a) Static SAXS intensity IðqÞ obtained from the
confined fluid, presented on a log scale as a function of scattering
vector components parallel (q∥) and perpendicular (q⊥) to the
confining channels. The solid, dashed, and dashed-dotted white
lines depict the parallel (0°), nonparallel (16°), and diagonal (45°)
directions (with respect to the confining channels) in which we
collect dynamic data. The dark red and blue features at q∥ ¼ 0 are
due to diffraction from the confining container and the central
beam stop, respectively, and should be neglected in the discussion
[20]. (b) Intensity autocorrelation functions g2ðq; tÞ collected
from the confined (blue) and bulk (red) colloidal dispersion at a
scattering vector magnitude of q ¼ 0.034 nm−1. The data from
the confined fluid are collected at an angle of 16° with respect to
the confining channels [denoted nonparallel; see the dashed line
of (a) for a graphical definition].
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FIG. 2. (a) Static structure factor SðqÞ obtained from the static
SAXS data. (b) Reduced wave vector dependent relaxation time
q2hτðqÞi, as determined from the dynamic XPCS data using the
Kohlrausch-Williams-Watts model (see the text for details). Data
are shown for the confined fluid in the diagonal (green dia-
monds), nonparallel (blue circles), and parallel (red squares)
directions as well as for the bulk fluid (black triangles). The
dashed lines correspond to reduced relaxation times for the
confined fluid, normalized to the effective viscosity of the solvent
in the parallel direction (see the text for details).
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differ between the bulk and confinement, implying a denser
packing of particles in the latter case. A possible explan-
ation may be the formation of dense particle monolayers
near each confining wall, which has been observed pre-
viously for charge-stabilized colloids in confinement [24].
Second, the data for the confined fluid are direction
dependent, as inferred already from the anisotropic
SAXS data in Fig. 1(a), demonstrating an anisotropic
SðqÞ and implying the ensuing anisotropic properties of
the confined fluid. Such an anisotropy in SðqÞ has
previously been observed for both charged [14] and
hard-sphere colloids [15,16] in spatial confinement.
The wave vector dependent decay rate of density

fluctuations, ΓðqÞ ¼ 1=τðqÞ, can be cast in the form of
the collective diffusion coefficient, ΓðqÞ ¼ q2DðqÞ. On the
other hand, de Gennes narrowing implies that the latter
behaves as the inverse of the structure factor,
DðqÞ ∝ 1=SðqÞ. We thus expect the reduced wave vector
dependent relaxation time to be proportional to the struc-
ture factor, q2τðqÞ ∝ SðqÞ [22]. This behavior is indeed
observed in Fig. 2(b), where we present q2hτðqÞi for the
same four systems as in Fig. 2(a); both for the bulk and
confinement we observe a maximum in the average
reduced relaxation time q2hτðqÞi coinciding with the
maximum in the structure factor SðqÞ. This contrasts with
the constant reduced Stokes-Einstein relaxation time
observed for dilute fluids, q2τ ¼ 6πηrH=kBT with kB
Boltzmann’s constant, T the absolute temperature, rH the
particles’ hydrodynamic radius (≈91 nm in this study), and
η the solvent’s viscosity [22]. Most importantly, the
anisotropic SðqÞ for the confined fluid leads to an aniso-
tropic q2hτðqÞi, with both functions exhibiting a similar
behavior as a function of wave vector direction. We
emphasize that the slower dynamics in the nonparallel
direction compared to the diagonal direction can only be
explained by anisotropic caging effects due to neighboring
particles. To the best of our knowledge, this is the first
observation of anisotropic de Gennes narrowing in con-
fined fluids, highlighting the importance of describing
dense confined fluids at the level of anisotropic pair
densities.
The agreement between q2hτðqÞi and SðqÞ in Fig. 2 is

only qualitative. This is notable when comparing data
collected in the parallel and diagonal directions; the static
structure factors are similar, but the dynamics is slower in
the latter case. A possible explanation is that colloidal
dispersions also exhibit hydrodynamic interactions medi-
ated by the solvent. In particular, we expect a viscous drag
effect due to the presence of a solid surface, which depends
on both the direction and the particle’s distance from the
wall (see, e.g., Ref. [25]). To estimate the magnitude of this
effect, we have determined effective q-independent vis-
cosities in the diagonal, nonparallel, and parallel directions
following Ref. [25], assuming a uniform distribution of
particle distances from the walls and employing the

superposition approximation of Ref. [26]. In Fig. 2(b)
we show as dashed lines the reduced relaxation times in the
diagonal and nonparallel directions, normalized to the
lower effective viscosity parallel to the confining walls.
Although this normalization procedure is only approxi-
mate, it is clear that the quantitative differences in q2hτðqÞi
between the diagonal and parallel directions can (at least
partly) be attributed to the viscous drag effect.
Nevertheless, the strongest slowing down in the nonparallel
(16°) direction as compared to the diagonal (45°) and
parallel (0°) direction demonstrates that a higher structure
factor peak seems the strongest predictor for slower
dynamics, i.e., de Gennes narrowing.
In principle our experimental results could be analyzed

using mode-coupling theory, which is a dynamic counter-
part of the theoretical approach used in Refs. [15,16].
However, although mode-coupling theory has recently
been extended to confined hard-sphere fluids, the calcu-
lations have remained difficult and scarce in practice [7,27].
Moreover, a quantitative analysis of the data in Fig. 2(b)
would require the inclusion of both hydrodynamic particle-
particle [9] and particle-wall [25] interactions, which is
highly nontrivial for the present case of a dense fluid in
narrow confinement. Such an analysis, which may include
the counterbalancing of hydrodynamic particle-particle and
particle-wall interactions [28], has not yet been worked out
theoretically for dense confined fluids and is beyond the
scope of the present study. It is our hope that the anisotropic
de Gennes narrowing reported here will both guide theo-
retical development and facilitate the interpretation of
experiments on structural relaxation in dense confined
fluids.
Finally, we comment on a promising future application

of the methodology exploited here. Recent Monte Carlo
simulations and calculations within mode-coupling theory
have predicted the existence of reentrant glass transitions in
confined hard-sphere systems upon varying the surface
separation H [27]. Our approach provides a means to
experimentally verify this intriguing prediction; by carrying
out a combined SAXS and XPCS experiment for dense
hard-sphere fluids as a function of H, one could determine
how the onset of the glass transition depends on the
confining surface separation.
In summary, we have simultaneously probed the micro-

scopic structure and wave vector dependent collective
diffusion of spatially confined fluids, by combining
high-energy SAXS and XPCS experiments on a colloidal
dispersion confined in specifically designed microfluidic
channel arrays. Most importantly, we report the first
observation of anisotropic de Gennes narrowing in con-
fined fluids, with the anisotropic structure factor showing
up as anisotropic wave vector dependent collective diffu-
sion. Our results establish a direct connection between the
structure and dynamics in confined fluids at the funda-
mental level of anisotropic pair densities, and thereby
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provide an important conceptual step towards a micro-
scopic description of collective diffusion in dense confined
fluids.
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