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Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized
in certain unconventional superconductors. Establishing its potential existence is important for our
fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical
magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints
on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d-wave
superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor
a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped
La1.905Ba0.095CuO4 [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].
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Superconductivity can have significant effects on the
structure of the spin fluctuations. This includes, for example,
the opening of a spin gap at low energies and the appearance
of a magnetic neutron resonance when the gap exhibits sign
changes along the Fermi surface as in cuprates and iron-
based materials [1]. Similarly, the structure of the magnetic
fluctuations can have important consequences for the super-
conducting state, even possibly its mere existence [2].
Thus, spin fluctuations and unconventional superconductiv-
ity are intimately linked, and the question of exactly how
they are connected and what this tells us about the pairing
mechanism [1] remains a challenging and relevant problem
in the field of high-temperature superconductivity.
The pseudogap regime of the underdoped cuprates is

highly susceptible to spin and charge order. Uni-
directionally (striped) modulated spin and charge order
was first discovered near a hole doping of x ¼ 1=8 in
La1.6−xNd0.4SrxCuO4 [3] and, subsequently, in other cup-
rates also exhibiting low-temperature tetragonal crystal
structure, including La2−xBaxCuO4 [4–7]. However, stripe
correlations appear to be present in many other cuprates,
and the universal hourglass spin excitation spectrum
observed in inelastic neutron scattering experiments has
been explained within stripe models [8–10]. On the other
hand, calculations based on purely itinerant models that
include d-wave superconductivity but no static stripe order
also find a neutron resonance with an hourglass dispersion
[11]. At present, a detailed quantitative description of the
spin dynamics of the cuprates and its evolution from
antiferromagnetic spin waves in the parent compounds
to itinerant paramagnons with a clear spin gap and a
neutron resonance in the overdoped regime, remains an
unsettled problem. Hence, it is important to study the
intermediate doping regime where prominent stripe corre-
lations coexist with superconducting order.

An experimental study of the transport properties of
striped La1.875Ba0.125CuO4 [12] reported 2D superconduc-
tivity coexisting with stripe order at temperatures above the
3D superconducting transition temperature. This was taken
as evidence for an antiphase ordering of the superconduct-
ing order parameter between the CuO2 layers, which
suppresses the interlayer Josephson coupling required for
3D superconductivity. The existence of pair-density-wave
(PDW) order, in which striped charge, magnetic, and
superconducting orders are intertwined with unusual
sign changes of the superconducting phase [13,14], has
been proposed as a possible explanation of these findings
[15,16]. In the PDW state, the superconducting order
parameter has a finite Cooper pair momentum with
periodicity equal to that of the magnetic stripe order as
illustrated in Fig. 1(a) [17]. This is to be contrasted with a
more ordinary modulated d-wave superconductor (dSC), in
which the superconducting order parameter is in phase
across the stripe domains and modulated in amplitude with
the same periodicity as the charge stripes, i.e., half the
wavelength of the PDW state as shown in Fig. 1(b).
The possibility of a PDW state was investigated within

microscopic models, and numerical studies of the t-J model
generally find that this state is energetically competitive
with other more ordinary modulated superconducting
states [18–21]. Similar conclusions were reached within
an extended version of BCS theory above a critical pairing
strength [22], while subsequent Hartree-Fock studies
focused on the single-particle electronic properties of
phases of combined PDW order and antiferromagnetic
stripes [23,24]. More recently, finite momentum super-
conducting PDWorder has resurfaced in theoretical studies
of the charge density wave (CDW) order detected in
underdoped cuprates [25–27]. The existence of an
entangled CDWþ PDW phase was found and analyzed
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both in the context of an emergent SU(2) symmetry of the
fermionic hot-spot model [27,28] and in the spin-fermion
model close to the onset of antiferromagnetism [29,30].
Experimentally, a recent neutron scattering study

of the low-energy spin response in stripe ordered
La1.905Ba0.095CuO4 [31] found a number of remarkable
results that were taken as evidence for a PDW state:
(1) gapless spin excitations coexisting with superconduc-
tivity and (2) the absence of a neutron resonance in the
superconducting state. These results are highly unusual
since both a spin gap and a neutron resonance are expected
in unconventional superconductors like the cuprates [1].
Motivated by the experimental findings of Ref. [31], we

perform a theoretical study of the fingerprints of a putative
PDW state on the inelastic neutron scattering spectrum.
We focus on the consequences of the PDW state rather than
its microscopic origin. We find that the PDW state in the
absence of magnetic and charge order exhibits neither a
spin gap nor a neutron resonance, contrary to the standard
dSC phase. For the state where PDW superconductivity
coexists with striped magnetic order, we find qualitatively
similar results. In particular, the neutron scattering spec-
trum in this coexistence phase is almost identical to that of
the normal state. In the standard dSC phase, on the other
hand, we show that the neutron resonance is robust to
coexisting stripe order. These findings support a scenario
where the absence of a spin gap and a magnetic resonance
in underdoped La1.905Ba0.095CuO4 [31] is explained by the
existence of a PDW condensate.
The stripe phase coexisting with superconductivity is

studied within a phenomenological mean-field one-band
Hubbard model

HMF ¼ −
X

ijσ

ðtij þ μδijÞc†iσcjσ þ U
X

iσ

hniσ̄iniσ

−
X

hiji
½Δjic

†
i↑c

†
j↓ þ H:c:�; ð1Þ

with U > 0. For the hopping integrals tij, we include
nearest-neighbor t ¼ 1 (setting the unit of energy) and
next-nearest-neighbor t0 ¼ −0.3. The details of the band
structure are not important for the results discussed below.
The associated Fermi surface of the tight-binding model is
depicted in Fig. 1(c). The Hamiltonian (1) and its general-
izations have been used previously to study the stripe phase
of the cuprates [32–35], including the electronic properties of
the PDW phase [23,24], but an analysis of the spin response
in the PDW phase has not previously been addressed
theoretically.
Here we use an 8 × 2 supercell to study the effects of

stripe and PDWorder on the magnetic excitation spectrum.
The periodicity of the magnetic (charge) stripe order is,
therefore, restricted to 8 (4) lattice sites along x̂ and 2
(1) sites along ŷ. This restriction limits the possible
solutions, and a self-consistent iterative procedure, in

general, only obtains a saddle point in the free energy
landscape. The actual minimum is often located at a
different periodicity which is inaccessible due to the
restriction to (8 × 2)-periodic unit cells. In such cases,
the Goldstone modes either remain gapped, or the spin-
wave branches cross zero energy before reaching the
ordering vector [36]. To study the spin response in the
presence of (8 × 2)-periodic stripes, we, therefore, adopt an
alternative approach: we impose a density modulation hniσi
corresponding to site-ordered magnetic and charge stripes
and a superconducting order parameter jΔijj ¼ 0.05 cor-
responding to either dSC or PDW order, as shown in
Figs. 1(a) and 1(b). For each chosen configuration, we
subsequently adjust the bare interaction U such that
Goldstone’s theorem is satisfied, i.e., such that the denom-
inator of the real part of the RPA susceptibility exhibits a
zero eigenvalue at qx ¼ π � ðπ=4Þ (see the Supplemental
Material [37] for further details). This procedure guarantees
a stable energy minimum in the energy landscape of
(8 × 2)-periodic stripes and has the benefit of allowing
us to study PDW-, dSC-, and nonsuperconducting solutions
within the same region of parameter space and the same
assumed density modulations. Furthermore, this allows us
to single out the effects of just the PDW order on the spin
susceptibility.
We apply a supercell formalism, where the total

N × N (here N ¼ 96) system consists of supercells of size
8 × 2. The dynamic spin susceptibility χþ−ðq;ωÞ ¼
χþ−ðq; iωn → ωþ iδÞ that determines the neutron scatter-
ing intensity may be obtained from

χþ−ðq; iωnÞ ¼
X

ri;rj

e−iqðri−rjÞχþ−ðri; rj; iωnÞ; ð2Þ

which contains terms originating from both the intra- and
intersupercell structure. Here, ri ¼ Ri þ i where Ri yields
the supercell containing site ri and i gives the site of ri in that
supercell. The site-dependent susceptibility is obtained from

χþ−ðri; rj; iωnÞ ¼
Z

β

0

dτeiωnτhSþðri; τÞS−ðrj; 0Þi; ð3Þ

FIG. 1. (a),(b) Illustration of the unit cells with charge and spin
order, and either PDW (a) or dSC (b) superconducting order.
The arrows denote the magnetization, the diameter of the circles
the hole density, and the colors on the bonds indicate the sign
of the superconducting order parameter; green is positive and
magenta is negative. (c) Normal state Fermi surface with a doping
of 12.5%.
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where Sþðri; τÞ ¼ c†ri↑ðτÞcri↓ðτÞ is the spin raising operator
at position ri at (imaginary) time τ and S−ðri; τÞ the
corresponding spin lowering operator. The bare susceptibil-
ity takes the standard form consisting of contributions from
both normal and anomalous Green functions as detailed in
the Supplemental Material [37]. At the RPA level, the site-
dependent susceptibility is given by

χþ−ðri; rj;ωÞ ¼ χþ−
0 ðri; rj;ωÞ

þ U
X

rl

χþ−
0 ðri; rl;ωÞχþ−ðrl; rj;ωÞ; ð4Þ

where χþ−
0 ðri; rj;ωÞ is the bare susceptibility calculated with

respect to the mean-field Hamiltonian in Eq. (1).
In order to disentangle the effects of superconductivity

on the spin response from those of the striped magnetic
order, we start by considering systems with either only dSC
or only PDW order, i.e., without coexisting charge and
magnetic order. In Fig. 2 we show the imaginary part of the
RPA susceptibility for the dSC phase at qy ¼ π. As evident
from the results for the bare susceptibility χ0 (red dashed
curve) in Figs. 2(c) and 2(d), one clearly sees the opening of
a spin gap below 2Δ (at U ¼ 0). At finite U, a resonance
peak, which shifts to lower energies asU increases, appears
at energies slightly below the bare spin gap as seen
more clearly from Figs. 2(e) and 2(f), as expected for a
superconducting gap that changes sign under translation of
Q ¼ ðπ; πÞ [1,11].
The corresponding results for the case with only PDW

order are plotted in Fig. 3 and seen to be in stark contrast to
the phase with only dSC order (Fig. 2). In the PDW phase,
although the system is superconducting, a spin gap is
clearly absent. Without a spin gap, quasiparticle damping
is not suppressed, which further implies that a magnetic
resonance should be absent, consistent with the RPA results

displayed in Fig. 3. As seen, the spectral weight is rather
structureless and distributed over a wider range in both
frequency and momentum. A comparison of the PDW
phase with the normal (nonordered) case shown in
Figs. 3(d)–(f) by the dotted black lines reveals that the
spin response of the normal state and the PDW state are, in
fact, remarkably similar.
One may understand the absence of a spin gap in the

PDW state from the zero frequency single-particle spectral
weight Aðk;ω ¼ 0Þ and the associated density of states
(DOS) displayed in Figs. 4(a) and 4(d). The dSC phase (not
shown) exhibits the usual gap structure, with gap nodes
along the jkxj ¼ jkyj lines in AðkÞ. In contrast, the PDW
phase exhibits states on large parts of the Fermi surface
[Fig. 4(a)], and the DOS clearly does not exhibit a
suppression of states near the Fermi level [24]. The

FIG. 2. (a)–(c) Imaginary part of the spin susceptibility
Imχþ−ðq;ωÞ with only dSC order. Here we have set qy ¼ π
and plot Imχþ−ðqx; π;ωÞ versus qx=π and ω=t with (a) U ¼ 0,
(b) U=t ¼ 1.8, and (c) U=t ¼ 2.2. For clarity, the intensity of the
first two cases has been rescaled. (d)–(f) show the imaginary part
of the q-integrated bare (red dashed) and RPA (blue solid lines)
susceptibilities.

FIG. 3. (a)–(c) Imaginary part of the spin susceptibility
Imχþ−ðq;ωÞ versus qx=π and ω=t for a system with only
PDW order for the same values of U as in Fig. 2. (d)–(f)
Imaginary part of the q-integrated susceptibilities corresponding
to (a)–(c). The black dashed lines show the integrated RPA
susceptibility in the normal state.

FIG. 4. (a)–(c) The spectral function Aðk;ω ¼ 0Þ for a system
with PDW order and increasing magnitude of the site-averaged
magnetic moment. (d)–(f) Comparison of the DOS for the
PDW and dSC phases for the same parameters corresponding
to panels (a)–(c).
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low-energy states in the PDW state are caused by the
mismatch of the real-space pairing bonds seen in Fig. 1(a),
which are known to produce low-energy Andreev-like
zero-energy states [38].
We now turn to the full coexistence phase with (8 × 2)-

periodic magnetic and charge stripes as well as PDW or
dSC orders present. Combining superconductivity with
magnetic and charge order leads to a reconstruction of
the Fermi surface evidenced in Figs. 4(b) and 4(c). The
effect of a finite (weak) magnetization on the DOS is
relatively minor, as seen in Figs. 4(e) and 4(f). The system
with a PDW does not exhibit a full gap, even at ω ¼ 0,
while the gap present in the dSC case is only altered
quantitatively by the addition of magnetism. Similar
conclusions hold for the spectral function: the PDW state
still exhibits states on large parts of the Fermi surface,
while only states along the nodal lines are present in the
dSC phase.
Proceeding to study the spin-wave spectrum of the

coexistence phase, we first note that the presence of
Goldstone modes necessarily excludes the opening of a
spin gap. This is clearly seen in Fig. 5, where we show the
imaginary part of the susceptibility χþ−ðq;ωÞ versus qx
with qy ¼ π for an increasing magnitude of the site-
averaged magnetic moment. The Goldstone modes are
seen by the high intensity peaks at ω ¼ 0 for qx ¼ π � π=4
for all the cases shown. Figures 5(a)–(c) correspond to a
site-averaged magnetic moment ofM ∼ 0.05, Figs. 5(d)–(f)
haveM ∼ 0.1 [39], and Figs. 5(g)–(i) haveM ∼ 0.4 (see the

Supplemental Material [37] for the exact order parameters
used). In the dSC phase, there is still a resonance indicated
by the region of high intensity at qx ¼ π visible as the
region of high intensity bridging the two spin-wave
branches as seen most clearly in Figs. 5(c) and 5(f). This
is in stark contrast to the PDW case [Figs. 5(b) and 5(e)]
where this coherent excitation is completely washed out,
similar to the case shown in Fig. 3 without charge and
spin order. For larger magnetic moments, the magnetic
excitations approach the standard spin-wave branches of
the stripe phase [40–42], but a significantly broadened
dispersion at the resonance point (qx ¼ π) is seen to remain
present in the PDW phase compared to the dSC phase, as
seen by comparison of Figs. 5(h) and 5(i).
To illustrate this more clearly, we show in Fig. 6 the

difference in the q-integrated spin susceptibility between
the superconducting and normal state for both the PDW
(solid blue) and dSC orders (dotted red). These results
are for the case where the site-averaged magnetic moment
M ∼ 0.1 [Figs. 5(d)–(f)]. As seen, the dSC phase exhibits a
clear resonance aroundω=t ∼ 0.18, while the PDW phase is
structureless. In fact, the PDW case has an almost identical
spin response to the normal state, a result that is in good
agreement with the experimental data measured on LBCO
at x ¼ 0.095 by Xu et al. [31].
To summarize, we have studied the distinct signatures

of a PDW state with intertwined striped spin, charge, and
antiphase superconducting bond order on the dynamic spin
susceptibility. We have found that in the PDW state both a
spin gap and a neutron resonance are absent, in contrast
to the coexistence phase with standard in-phase d-wave
superconductivity where the neutron resonance is pre-
served. This absence of the usual fingerprint of a sign-
changing superconducting gap in the PDW state can be
traced back to its gapless single-particle excitation spec-
trum. These results are in agreement with recent neutron

FIG. 5. Imaginary part of the spin susceptibility Imχþ−ðq;ωÞ
in the presence of stripe charge and magnetic order without
superconductivity (left column) and with superconductivity
(middle and rightmost columns) for increasing magnetic order;
(a)–(c) show the case where the site-averaged magnetic
moment M ∼ 0.05, (d)–(f) correspond to M ∼ 0.1, and
(g)–(i) have M ∼ 0.4.

FIG. 6. Comparison of the integrated neutron resonance for the
PDW and dSC cases. The blue curve shows the difference
between the PDW and the nonsuperconducting case, while
the red curve shows the difference between the dSC case and
the nonsuperconducting case. The dSC shows clear signs of a
resonance, which is absent for the PDW case.
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scattering results on x ¼ 0.095 LBCO [31], where neither a
spin gap nor a resonance were observed below the super-
conducting critical temperature.
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