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We discuss the transport properties of a disordered two-dimensional electron gas with strong Rashba
spin-orbit coupling. We show that in the high-density regime where the Fermi energy overcomes the energy
associated with spin-orbit coupling, dc transport is accurately described by a standard Drude’s law, due to a
nontrivial compensation between the suppression of backscattering and the relativistic correction to the
quasiparticle velocity. On the contrary, when the system enters the opposite dominant spin-orbit regime,
Drude’s paradigm breaks down and the dc conductivity becomes strongly sensitive to the spin-orbit
coupling strength, providing a suitable tool to test the entanglement between spin and charge degrees of
freedom in these systems.
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Spin-orbit (SO) coupling is a fundamental ingredient in
spintronics [1], as it provides an advantageous locking
between spin and electron orbital momentum. Recently,
intense research efforts [2] have been devoted to two-
dimensional materials with broken inversion symmetry,
where the SO strength, parametrized by a characteristic
energy scale E0, can be tuned by means of external
conditions (electric fields, gating, doping, pressure, strain,
etc.). In most of these systems (for example, surface alloys
[3–9], layered bismuth tellurohalides [10–16], HgTe quan-
tum wells [17], and interfaces between complex oxides
[18–32]) the total charge carrier density n can be tuned
down to very small concentrations, implying very small
Fermi energies EF. Although the high-density (HD) regime
EF ≳ E0 has been widely investigated [2,33–38], relatively
less attention has been paid to the opposite regime of
dominant SO (DSO), E0 ≳ EF.
In this Letter we provide a detailed investigation of the dc

conductivity of a 2D electron gas (2DEG) with Rashba [39]
SO coupling in the different density regimes. Using a
Boltzmann approach and a fully quantum analysis based on
the Kubo formula, we show that in the high-density regime
EF ≳ E0 dc transport is independent of the SO strength, and
the dc conductivity σdc of electrons having effective massm
and scattering time τ0 follows the conventional Drude law
for 2DEGs,

σDrude ¼
ne2τ0
m

; ð1Þ

which results from a nontrivial cancellation of the SO
coupling effects on the quasiparticle velocity and transport
scattering time. Remarkably, as soon as the system enters
the DSO regime E0 ≳ EF, Drude’s paradigm Eq. (1) breaks
down and the dc conductivity accurately follows the
analytical formula:

σDSO ¼ e2τ0n0
2m

�
n4

n40
þ n2

n20

�
; n ≤ n0; ð2Þ

where n0 ¼ 2mE0=ðπℏ2Þ is the density at EF ¼ E0. In
contrast to the linear dependence of σdc on the charge
density found in the HD regime, n ≥ n0, Eq. (2) predicts an
unconventional nonlinear behavior of σdc with n that is
controlled by the SO interaction encoded in n0. The
relevance of this result is twofold: demonstrating that dc
transport is strongly sensitive to Rashba SO coupling, not
only does it suggest that SO coupling could be measured in
a transport experiment, but also, which is more important
for applications, it points to the possibility of tuning the
conductivity of a 2DEG by tuning the SO coupling strength
via external gates.
A disordered Rashba 2DEG confined to the (x, y) plane

is described by the following Hamiltonian:

H ¼
Z

drΨ†ðrÞ
�
p2

2m
þ αẑ · ðp × ~σÞ þ V impðrÞ

�
ΨðrÞ;

ð3Þ

where V impðrÞ is the disorder potential, α is the SO
coupling, ~σ is the vector of Pauli matrices, and ΨðrÞ and
Ψ†ðrÞ are spinor fields which, respectively, create and
destroy electrons at position r and â ¼ ~a=j~aj. Here we
limit ourselves to the simplest case of Gaussian random
disorder with “white noise” correlations; namely, we set
hV impðrÞV impðr0Þiimp ¼ niv2impδðr − r0Þ, where vimp and ni
denote, respectively, the scattering strength and the impu-
rity density. In the absence of impurities, H gives an
electronic spectrum, depicted in Fig. 1, consisting of two
bands with dispersion Es

p − E0 ¼ ðpþ sp0Þ2=ð2mÞ − E0,
where p0 ¼ mα, E0 ¼ mα2=2, and s ¼ �1 denotes the
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eigenvalue of the helicity operator S defined as usual as
S ¼ ẑ · ðp̂ × ~σÞ. In the following we measure the Fermi
energy EF from the lower band edge, so that EF ¼ E0

corresponds to the “Dirac point” p ¼ 0, and the HD and
DSO regimes are realized, respectively, for EF > E0

and EF < E0.
As already noted in Ref. [40], the onset of the DSO

regime leads to a rather sharp change in density of states
(DOS) at the Fermi level. Indeed, while for EF > E0 the
DOS is constant, NðEFÞ ¼ N0 ¼ m=ðπℏ2Þ, for EF < E0 it
displays a van Hove singularity, NðEFÞ ¼ N0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0=EF

p
,

leading to a modification of the dependence of the density
on the Fermi energy [40]:

n≃
�
N0ðEF þ E0Þ EF > E0

2N0

ffiffiffiffiffiffiffiffiffiffiffi
EFE0

p
EF < E0:

ð4Þ

In the presence of static diluted disorder, the singular
behavior of the DOS reflects directly on the quasiparticle’s
lifetime that, using the Fermi golden rule (see, e.g.,
Ref. [41]), can be cast as τðEs

pÞ ¼ V½Pp0s0 Q
ps
p0s0 �−1, where

V is the 2D volume of the sample and

Qps
p0s0 ¼ πniv2impð1þ ss0p̂ · p̂0ÞδðEs

p − Es0
p0 Þ ð5Þ

is the scattering kernel. Using Eqs. (4) and (5) one can
easily show that the quasiparticle scattering time scales
linearly with the density in the DSO regime, i.e.,

τ ¼ τðEFÞ ¼
�
τ0 EF > E0

τ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EF=E0

p ¼ τ0ðn=n0Þ EF < E0;
ð6Þ

where τ0 ¼ ℏ2=ðmniv2impÞ denotes the quasiparticle scatter-
ing time in the absence of SO.

To explain the behavior of the conductivity across the
different regimes, we start by recalling the definition of the
velocity operator in the helicity basis,

½~v�ss0 ¼ ~vpsδss0 − iαsð1 − δss0 Þt̂p; ð7Þ

where ~vps ¼ ∇pEs
p ¼ p̂ðp=mþ sαÞ denotes the quasipar-

ticle velocity and t̂p is defined as t̂p ¼ fpy=p;−px=pg. An
important thing to underline here, general for any chiral
system, is that in the presence of SO coupling also the
velocity acquires a spin structure, which has a deep impact
on the transport properties. As we discuss in more detail
below, to a first approximation the conductivity can be
described within a standard semiclassical Boltzmann
approach that only keeps the quasiparticle current, arising
from the diagonal components of the velocity operator
Eq. (7). In the relaxation time approximation at T ¼ 0, σdc
can be then estimated as

σdc ≃ σBdc ¼
e2

2V

X
ps

δðEF − Es
pÞj~vpsj2τtrps; ð8Þ

where the transport scattering times τtrps satisfy the follow-
ing equations [42]:

τtrps
τðEs

pÞ
¼ 1þ 1

V

X
p0s0

Qp0s0
ps

~vp0s0 · ~vps
j~vpsj2

τtrp0s0 : ð9Þ

Using explicitly the definition of Qp0s0
ps [Eq. (5)], we

introduce the transport helicity index η ¼ sðv̂ps · p̂Þ≡
ẑ · ð~vps × h~σipsÞ ¼ �1, which accounts for the reciprocal
orientation of spin and velocity, and we recast Eq. (9) as
follows:

τtrη
τ
¼ 1þ niv2imp

4vFℏ2

X
η0
ηη0pη0τ

tr
η0 ; ð10Þ

where vF ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2mEF

p
and pη ¼ jmvF − ηp0j are the Fermi

momenta on the inner and outer Fermi surfaces. The above
equation suggests that the index η can be used to efficiently
classify the states at the Fermi level across the different
regimes. In particular, as illustrated in Fig. 1(a), where
the value of η is indicated by the red or blue colors of the
surface, at EF > E0, η simply coincides with s; on the
contrary, at EF < E0, η allows us to distinguish between
the two Fermi circles that have the same value of s but
antiparallel quasiparticle velocities. Using this classifica-
tion σBdc can be cast as

σBdc ¼
e2vF
4π

X
η

τtrηpη ¼
X
η

ση; ð11Þ

where the transport scattering times τtrη are given by the
solution of Eq. (10),

FIG. 1. (a) Dispersion of the Rashba model. The solid (dashed)
contours and the red (blue) colors denote, respectively, s and η.
(b) Examples of allowed and forbidden backscattering processes.
Thick (red and blue) and thin green arrows denote the quasi-
particle velocity ~vps and the spin h~σips of each state, respectively.
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τtrη ¼ τpη=p̄F; ð12Þ

with p̄F ¼ 1=2
P

ηpη; i.e., p̄F ¼ mvF for EF > E0 and
p̄F ¼ p0 for EF < E0. As one can easily check, Eqs. (11)
and (12) yield the Drude result Eq. (1) at EF > E0, and
Eq. (2) in the DSO regime.
The physical relevance of η, as compared to the standard

helicity s, is evident in Fig. 1(b), where we show that spin
conservation forbids backscattering between states having
the same value of η. What is more important, in the DSO
regime the only allowed backscattering processes reverse
the sign of the quasiparticle velocity without changing
the direction of momentum. These effects determine the
density dependence of the scattering times (a) and of the
conductivities (b) of the majority (η ¼ −1) and minority
(η ¼ þ1) carriers shown in Fig. 2. As one can see in
Fig. 2(b), transport is in general dominated by the majority
carriers that, due to the suppression of backscattering,
also have the larger transport scattering time, τtr− > τ > τtrþ.
Let us focus on the transport properties of majority and
minority carriers across the different regimes. In the HD
regime τ is a constant and τtr−=τ increases as the density
decreases due to the shrinking of the inner Fermi circle. At
n ¼ n0, where only states with η ¼ −1 are present, back-
scattering is completely suppressed and one recovers
τtr− ¼ 2τ, like, e.g., in graphene [46]. However, differently
from graphene, as long as n > n0, a compensation between
SO effects on the velocity and on the transport scattering
times of the two types of carriers restores the usual Drude
conductivity, even for n very close to n0. This result is
nontrivial: indeed, setting naively τtrη ¼ τ in Eq. (8) would
lead to [42] σ ≃ ðn − n0=2Þτ0=m, i.e., σ < σDrude even at
n > n0 [47]. On the other hand, as the system enters the

DSO regime τ starts to decrease linearly, as predicted by
Eq. (6) and backscattering processes for the majority
carriers are progressively restored. Both these effects
quench τtr− as n < n0, see Fig. 2(a), leading to an overall
sublinear behavior of the conductivity, see Fig. 2(b).
A deeper insight on dc transport comes from the

generalization of the Boltzmann approach to fully include
quantum effects. To this end, we use the Kubo linear
response theory [48]. We start by noticing that, within the
self-consistent Born approximation (SCBA), the retarded
Green’s function is diagonal in the helicity basis and it is
given by the following matrix [48,49],

½GRðp;ωÞ�ss0 ¼ gRs ðp;ωÞδss0 ; ð13Þ

where gsðp;ωÞ ¼ ½ω − Es
p þ EF − ΣRðωÞ�−1 denotes the

Green function of electrons with helicity s. The self-energy
ΣRðωÞ ¼ niv2imp=ð2VÞ

P
p;s g

R
s ðp;ωÞ is spin and momen-

tum independent [48]. At zero frequency its imaginary
part defines the elastic scattering rate of quasiparticles,
Γ ¼ −Im½ΣRð0Þ� ¼ niv2impπ=ð2VÞ

P
p;s AsðpÞ, where

AsðpÞ ¼ −ð1=πÞImgRs ðp;ω ¼ 0Þ is the spectral function
of each helicity band. In Fig. 3(a) we plot the numerical
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FIG. 2. (a) Density dependence of the ratio τ∓=τ for the
majority (τtr−, solid blue line) and minority (τtrþ, solid red line)
carriers, and of the ratio τ=τ0 (dashed line). (b) Density depend-
ence of Boltzmann dc conductivity σBdc, and contribution σ∓ of
the two types of carriers, in units of σn0 ¼ n0e2τ0=m.
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FIG. 3. (a) Scattering rate in units of Γ0 as a function of n=n0 for
different E0. The dashed line shows ΓB ¼ 1=2τ [Eq. (6)].
(b) Numerical dc conductivity [Eq. (14)] as a function of
E0=Γ0 and n for Γ0 ¼ 0.5 meV and m ¼ 0.7me (as appropriate,
e.g., for LaAlO3=SrTiO3 interfaces [24]). The blue lines show
Boltzmann conductivity for E0 ¼ 50 and 100Γ0 (c) Mobility μt
(solid line) normalized to μ0t ¼ e=ð2ℏΓ0mÞ, compared with
Boltzmann’s μB (dashed line). Shaded areas in (a) and (c) denote
the low-density regions beyond the diffusive approximation.
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self-consistent Γ as a function of the ratio n=n0 for different
values of the SO coupling and we compare it with the
Boltzmann result ΓB ¼ 1=ð2τÞ. As expected, the
Boltzmann result is accurate for large n=n0, where
Γ ≪ EF holds and one can approximate the spectral
function as AsðpÞ≃ δðEs

p − EFÞ, and its accuracy
increases with increasing E0=Γ0. On the contrary, as EF
approaches the band edge, the DOS singularity is smeared
by disorder and finite-band effects cut off the divergence of
the Boltzmann result ΓB ¼ Γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0=EF

p
following from

Eq. (6). In the extreme diluted limit [shaded region in
Fig. 3(a)], Γ as given by the SCBA vanishes and the
diffusive approximation breaks down [42].
Within linear response theory the conductivity is given

by the Kubo formula and, at T ¼ 0, it is related to the on-
shell current-current response function as follows [48],

σdc ¼
ℏ
2π

ðPAR
xx − Re½PRR

xx �Þ; ð14Þ

where PLM
xx is given by

PLM
xx ¼ 1

V

X
p

Tr½jxðpÞGLðp; 0ÞJLMx ðpÞGMðp; 0Þ�; ð15Þ

and the superscripts L, M ¼ A, R indicate advanced or
retarded quantities. In the above equation jxðpÞ and JLMx ðpÞ
denote the bare and dressed currents and they are, in
general, represented by 2 × 2matrices in the helicity space.
In particular, jxðpÞ ¼ evx is proportional to the bare
velocity Eq. (7), while Jx has to be determined self-
consistently [42] and it can be written as

½~JLMðpÞ�ss0 ¼ e½~VLM
ps δss0 − i ~αLMsð1 − δss0 Þt̂p�; ð16Þ

where ~VLM
ps ¼ p=mþ s ~αLMp̂ denotes the dressed quasi-

particle velocity. By comparing Eqs. (7) and (16) one sees
that, as usual [48] in the Kubo formalism, the effects of
scattering by impurities are encoded, via the vertex function
~αLM, in the renormalization of the velocity. As we show
below, under appropriate conditions, these effects are
equivalently accounted for in Boltzmann language by
the transport scattering times.
The anomalous velocity ~αLM also plays an important role

in the spin-Hall effect [50]. In this context it was shown
that, although ~αRA ¼ 0 in the HD regime [36,51,52] and
~αRA ≠ 0 in the DSO regime [49], in both regimes the spin-
Hall conductivity vanishes. This result follows straightfor-
wardly from the vanishing of ~αRA in the HD regime while it
can be proven by an explicit calculation in the DSO
regime [49].
Using Eqs. (7) and (16), the current response function

Eq. (15) can be cast as the sum of inter- and intraband
terms: PLM

xx ¼ PLM
intra þ PLM

inter, where

PLM
intra ¼

e2

2V

X
ps

~vps · ~V
LM
ps gLs ðp; 0ÞgMs ðp; 0Þ; ð17Þ

PLM
inter ¼

e2

2V
α ~αLM

X
ps≠s0

gLs ðp; 0ÞgMs0 ðp; 0Þ: ð18Þ

From a numerical self-consistent solution of the self-energy
and vertex equations, we calculate the fully quantum dc
conductivity Eq. (14). The results are shown in Fig. 3(b),
where we plot the conductivity as a function of the
electronic density and of the SO coupling. Here we also
plot the Boltzmnann conductivity (blue lines) for two
values of E0, showing that Kubo results follow quite
closely the Boltzmann prediction.
The equivalence between the two approaches can be

proven in the limit of vanishingly small broadening of
the spectral functions, Γ ≪ EF, where we can discard [48]
the RR term in Eq. (14). Indeed, by also neglecting the
interband contribution to PRA, relevant only at n≃ n0
where the spectral functions of the two chiral bands
overlap, we can recast the conductivity as

σdc ≃ e2

4VΓ

X
ps

~vps · ~V
RA
ps δðEF − Es

pÞ; ð19Þ

which, by direct comparison with Eq. (8), yields σdc ≃ σBdc
provided that ~VRA

ps ≃ τtrps~vps=τ. In the limit Γ ≪ EF this
relation is a straightforward consequence of the vanishing
of ~αRA for EF > E0, and it can be easily proved for
EF < E0 using ~αRA ≃ αð1 − EF=E0Þ [42]. This shows, in
particular, that on the Fermi circles Vps=vF ¼ τtrη=τ.
The deviations between Boltzmann and Kubo results are

better seen in Fig. 3(c), where we compare the correspond-
ing mobilities, respectively defined as μB ¼ σBdc=ðenÞ and
μt ¼ σdc=ðenÞ, and they can be ultimately ascribed to two
factors. First, finite-band effects, that are mostly relevant
for n ≲ 0.3n0 and are responsible for the deviations of Γ
from ΓB, shown in Fig. 3(a), and for the relevance of RR
terms [42] that in turn imply that for small densities μt tends
to saturate, in contrast to μB. Second, interband terms that
are mostly relevant at n≃ n0 and give a smoothening of
dependence of μt on n. This effect could also be captured
by replacing the semiclassical Boltzmann equation with a
fully quantum kinetic equation that also includes the off-
diagonal components of the velocity operator Eq. (7) and of
the nonequilibrium density matrix in the helicity space.
This allows one to account, in the presence of external
fields, for the coherent superpositions of states with differ-
ent helicities, as explained, e.g., in Refs. [33,53–55].
In conclusion, we have shown that in Rashba 2DEG

SO coupling entails an unconventional dc conductivity,
strongly dependent on the density and on the SO coupling
strength. The experimental verification of our results
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requires the condition for diffusive transport (EF ≫ Γ) to be
fulfilled in theDSOregime (E0 > EF): this ultimately implies
E0 > EF ≫ Γ. The conductivity anomalies in the DSO
regime can then be accessible experimentally in relatively
clean (Γ0 ∼ 1 meV) samples of the strong-Rashba materials
mentioned in the introduction (see Refs. [3–32]), where E0≈
10–140meV and m≈0.2–0.7me, corresponding to electron
densities n0 ≈ ð0.6–8Þ × 1013 cm−2 [56]. Finally, we also
remark that the large value of E0 in these systems guarantees
that our zero-temperature results will provide a good descrip-
tion for real materials up to temperature scales kBT ∼ E0. In
addition, the occurrence of the DSO anomalies at relatively
large densities n≃ n0 also justifies neglecting the electron-
electron interactions, even though a full understanding of the
conductivity anomalies in the diluted regime where inter-
actions become relevant is certainly an interesting topic for
future investigation.
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