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Single-sided Marchenko equations for Green’s function construction and imaging relate the measured
reflection response of a lossless heterogeneousmedium to an acoustic wave field inside this medium. I derive
two sets of single-sided Marchenko equations for the same purpose, each in a heterogeneous medium, with
onemedium being dissipative and the other a correspondingmediumwith negative dissipation. Double-sided
scattering data of the dissipativemedium are required as input to compute the surface reflection response in the
corresponding medium with negative dissipation. I show that each set of single-sided Marchenko equations
leads to Green’s functions with a virtual receiver inside the medium: one exists inside the dissipative medium
and one in the medium with negative dissipation. This forms the basis of imaging inside a dissipative
heterogeneous medium. I relate the Green’s functions to the reflection response inside each medium, from
which the image can be constructed. I illustrate the method with a one-dimensional example that shows the
image quality. The method has a potentially wide range of imaging applications where the material under test
is accessible from two sides.

DOI: 10.1103/PhysRevLett.116.164301

Introduction.—Recently, a formulation has been found
for obtaining the Green’s function for a virtual receiver
inside a 3D scattering acoustic medium from reflection data
measured at one side of the medium [1]. This single-sided
Marchenko equation was formulated by building on two
developments in 1D problems and extending them to 3D.
The first development was the recognition that solving the
1D Marchenko equation is equivalent to focusing an
acoustic wave field inside the 1D medium, as demonstrated
by Rose [2]. The second was finding that the 1D focusing
wave field can be combined with its response to give the 1D
Green’s function, which was shown by Broggini and
Snieder [3]. For virtual receivers in a horizontal plane
inside the medium, the Green’s functions of the upgoing
and downgoing wave fields can be computed from the
focusing wave field and the measured reflection response.
The Green’s functions can be used to obtain an image at the
depth level of the virtual receiver location [4].
Dissipation of wave energy plays an important role in

many scattering problems. In exploration geophysics, the
rock-fluid interaction largely determines the dissipation
properties. The dissipation can provide information on the
rock permeability, fluid mobility, and fluid saturation that
cannot be obtained from the velocity. This information is
important for hydrocarbon exploration and production [5],
and information obtained from rock samples is important for
understanding field measurements [6]. Attenuation plays an
important role in damage detection and characterization in
nondestructive testing of laminated composites [7]. In
medical imaging, attenuation and dispersion in biological
tissue play an important role in diagnostic and therapeutic
applications; while critically important for tissue characteri-
zation and treatment, it remains a challenge [8–11]. It is
therefore useful to have a method to retrieve the Green’s

function inside a dissipative medium. In 1D the inverse
scattering problem in a dissipative medium has been solved
using Marchenko equations; the solution requires the full
scattering matrix with infinite bandwidth as data [12,13].
Following the approach in [14], I show here that Green’s

functions for upgoing and downgoing wave fields can be
retrieved using scattering data at two depth levels in a 3D
heterogeneous and dissipative medium. I introduce the effec-
tual medium as the medium that is the same as the physical
medium, but with negative dissipation. For the dissipative
medium, two coupled Marchenko equations are derived that
use the single-sided reflection responses of both media to
compute the focusing functions. Two similar coupled equa-
tions are derived for the effectual medium. I show that the
reflection response of the effectual medium can be obtained
from the double-sided measured reflection and transmission
responses. I show how an image can be constructed from the
computed upgoing and downgoing Green’s functions and
illustrate the method with a 1D numerical example.
Green’s functions representations.—To derive 3D

Green’s functions representations I define the positionvector
of a spatial coordinate in a Cartesian reference frame as
x ¼ ðx; y; zÞ. The positive vertical axis points downward.
Coordinates at a constant depth level zn are denoted xn and
the time coordinate is given by t. In the derivations I use three
depth levels, i.e., the upper and lower boundaries at which
measurements are available and an arbitrary depth level in
between the upper and lower boundaries. The upper depth
level is at z0 and denoted ∂D0, the lower depth level is at zm
and denoted ∂Dm, the intermediate depth level at zi is
denoted ∂Di, and z0 < zi < zm. All heterogeneities are
assumed to be located in the domain D defined between
the outer depth levels, D0 and Dm. I define the truncated
domain asD0i ¼ fðx; yÞ ∈ R2; z0 < z < zig; the medium in
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D0i is called the truncated medium. Time and frequency
domains can be interchanged by employing a Fourier
transformation, for which I use p̂ðx;ωÞ ¼ R

pðx; tÞ×
expð−jωtÞdt, where j denotes the imaginary unit and ω
denotes angular frequency. In the frequency domain, the
medium for which measurements are available is charac-
terized in D by frequency and position-dependent mass
density ρ̂ðx;ωÞ and compressibility κ̂ðx;ωÞ. The effectual
medium is characterized in D by ρ̂�ðx;ωÞ and κ̂�ðx;ωÞ,
where the superscript � denotes complex conjugation, which
signifies the negative dissipation properties of the medium.
The upper half space z < z0 and lower half space z > zm are
homogeneous domains.
In the dissipative medium the focusing wave field can be

decomposed into its upgoing [f̂−1 ðx0; x0i;ωÞ] and downgoing
[f̂þ1 ðx0; x0i;ωÞ] parts, inwhichx0 denotes the observationpoint
and x0i the focusing point. Similarly, the up- and downgoing
parts of the Green’s function observed at xi and generated by a
downgoing source at x000 are denoted Ĝ�ðxi; x000;ωÞ. The
measured reflection response of the dissipative medium to
the same source and measured at x0 is given by R̂ðx0; x000;ωÞ.
These wave fields are depicted in Fig. 1, from which it can be
seen that the focusing wave field is defined in the truncated
medium whereas the Green’s function and the reflection
response are defined in the full medium. Similar definitions
can be given for wave fields in the effectual medium: they are

represented with an overbar; e.g., ˆ̄Rðx0; x000;ωÞ denotes the
reflection response of the effectual medium. Wave fields that
travel in the samedomain can be related through the reciprocity
theorem of the time-convolution type. The theorem is valid
for a dissipative medium, and the Green’s function represen-
tation is known as [4]

Z

∂D0

R̂ðx0; x000;ωÞf̂þ1 ðx0; x0i;ωÞdx0

¼ f̂−1 ðx000; x0i;ωÞ þ Ĝ−ðx0i; x000;ωÞ: ð1Þ
When thewave fields travel in the effectual medium, the result
is easily understood to be

Z

∂D0

ˆ̄Rðx0; x000;ωÞ ˆ̄fþ1 ðx0; x0i;ωÞdx0

¼ ˆ̄f
−
1 ðx000; x0i;ωÞ þ ˆ̄G−ðx0i; x000;ωÞ: ð2Þ

Later I will show how to obtain the reflection response of the
effectual medium from the measured data. Equations (1) and
(2) state that when the downgoing focusing wave field is sent
into the medium, its response to the truncated medium is
obtained together with a Green’s function. The Green’s
function is the upgoing response at a virtual observation point
x0i to a downgoing impulsive wave sent into the medium at x000 .
For waves propagating in a dissipative medium, time

reversal applies to an effectual medium such that it
compensates in time reversal for the amplitude decay
in forward propagation [15]. Therefore, wave fields in
the dissipative medium can be related to wave fields in the
effectual medium through the reciprocity theorem of the
time-correlation type. The introduction of an effectual
medium here not only accounts for losses in the medium,
but also corrects for amplitude decay of evanescent waves.
Corrections for exponential decay can only be done within
the fidelity limits of the measured data. For this reason, the
second Green’s function representation known for lossless
media requires a modification. When the focusing wave
field travels in the dissipative medium, the Green’s function
and the reflection response must be taken in the effectual
medium, and vice versa. This leads to the modified versions
of the second Green’s function representation in lossless
media [4], given by

Z

∂D0

ˆ̄Rðx0; x000;ωÞ½f̂−1 ðx0; x0i;ωÞ��dx0

¼ ½f̂þ1 ðx000; x0i;ωÞ�� − ˆ̄Gþðx0i; x000;ωÞ; ð3Þ
Z

∂D0

R̂ðx0; x000;ωÞ½ ˆ̄f−1 ðx0; x0i;ωÞ��dx0

¼ ½ ˆ̄fþ1 ðx000; x0i;ωÞ�� − Ĝþðx0i; x000;ωÞ: ð4Þ

(b)(a)

FIG. 1. (a) Down- and upgoing focusing functions, f̂�1 ðx0; x0i;ωÞ, at ∂D0 and focusing at ∂Di. (b) Downgoing impulse and measurable
reflection response, R̂ðx0; x000;ωÞ, at ∂D0 and Green’s functions, Ĝ�ðxi; x000 ;ωÞ, at ∂Di.
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Equation (3) states that when the time-reversed upgoing
focusing wave field in the truncated dissipative medium is
sent into the effectual medium, the time-reversed downgoing
focusing wave field in the truncated dissipative medium is
obtained together with a Green’s function. The Green’s
function is the downgoing response at a virtual point of
observation x0i to a downgoing impulsive wave sent into the
effectual medium at x000. Equation (4) can be interpreted in a
similar way by interchanging the dissipative medium and the
effectual medium. Equations (1) and (3) form one set of
equations that can be solved in the time domain for the up-
and downgoing parts of the focusing wave field in the
dissipative medium if the reflection responses at ∂D0 are
known in the dissipative and the effectual medium.
Equations (2) and (4) form a similar set that can be solved
using the same reflection responses. This is briefly explained
below, because solvingMarchenko equations and computing
an image are well-known techniques.
Marchenko-type equations and imaging.—The pro-

cedure is the same for both sets; only the solution for
the focusing wave field in the dissipative medium is
described. Transforming Eqs. (1) and (3) to the time
domain results in

G−ðx0i;x000; tÞ¼−f−1 ðx000;x0i; tÞþ
Z

∂D0

Z
t

−∞
Rðx0;x000; t− t0Þ

×fþ1 ðx0;x0i; t0Þdt0dx0; ð5Þ

Ḡþðx0i; x000; tÞ ¼ fþ1 ðx00; x0i;−tÞ −
Z

∂D0

Z
t

−∞
R̄ðx0; x000; t − t0Þ

× f−1 ðx0; x0i;−t0Þdt0dx0: ð6Þ

Both Green’s functions in the left-hand sides of Eqs. (5) and
(6) are zero for t < tdðx0i; x000Þ, in which tdðx0i; x000Þ is the time
instant of the first arrival. For t < tdðx0i; x000Þ the left-hand
sides of Eqs. (5) and (6) are zero and the equations can be
solved for the focusing wave field. By solving a similar
system for f̄�ðx000; x0i; tÞ, the up- and downgoing Green’s

functions in the dissipative medium can be computed from
Eq. (5) and the time-domain equivalent of Eq. (4). The
solution procedure is similar to the one given in [4], but
there is an important difference. The initial estimate of
fþ1 ½x000; x0i;−tdðx000; x0iÞ� requires an estimate of the energy
loss along the path from x000 to x0i at the time instant of the
direct arrival that must be compensated for. Smooth loss
and velocity models can be constructed from analyzing the
two reflection responses. Once the Green’s functions are
obtained, the reflection response in the dissipative medium
below ∂Di can be obtained for t > tdðx0i; x000Þ from the
mutual relation

G−ðx0i; x000; tÞ ¼
Z

∂Di

Z
t

0

Rðx0i; xi; t − t0ÞGþðxi; x000; t0Þdt0dxi;

ð7Þ
from which the image can be constructed by evaluating
Rðxi; xi; 0Þ; other possibilities are given in [4]. It is possible
to solve for the focusing wave field without making an
estimate of the path loss from surface to the focusing point
for the downgoing part of the focusing wavefield in the
dissipative medium; this estimate, however, will be too
weak. Using the same assumption for the initial estimate of
the downgoing focusing wavefield in the effectual medium
will result in a focusing wavefield that is too strong by the
same amount. This will lead to similar errors in the Green’s
functions and, therefore, also in the reflection responses
obtained from the Green’s functions. A similar expression
as Eq. (7) exists for R̄ðxi; x0i; tÞ. In the frequency domain,
the reflection response in the dissipative medium at the
focus point should be equal to the one obtained from the
effectual medium. This means that

Z
∞

ω¼−∞
R̂ðxi; xi;ωÞdω ¼

Z
∞

ω¼−∞
R̂ðxi; xi;ωÞdω: ð8Þ

The deviation from this result is equal to twice the two-way
path loss from surface to the focus point, with R̂ being weak

Homogeneous half space

Actual heterogeneous medium

∂D0z0

∂Dmzm

Homogeneous half space

δ(xH − xH)

R̂(x0,x0 , ω)

T̂ (xm,x0 , ω)

Homogeneous half space

Actual heterogeneous medium

∂D0z0

∂Dmzm

Homogeneous half space

T̂ (x0,xm, ω)

R̂(xm,xm, ω)

δ(xH − xH)

(b)(a)

FIG. 2. (a) Downgoing impulse from the top at ∂D0 and measurable reflection, R̂ðx0; x000;ωÞ, and transmission, T̂ðxm; x000;ωÞ, responses
at ∂D0 and ∂Dm, respectively. (b) Upgoing impulse from the bottom at ∂Dm and measurable reflection, R̂ðxm; x0m;ωÞ, and transmission,
T̂ðx0; x0m;ωÞ, responses at ∂Dm and ∂D0, respectively.
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and ˆ̄R being too strong by the same factor. This can be used
to correct the amplitude of the image and is illustrated in the
example below. Equation (8) will only result in a correction
when the focus point is on a reflecting boundary; no
correction is obtained in between reflectors. At such
intermediate points there will be no image either, so it is
of no concern.
Retrieving the reflection response of an effectual

medium.—Figure 2 depicts the measurements that can be
taken at two sides of a medium. Figure 2(a) shows that
when a downgoing impulse is sent into the dissipative
medium at x000 , its reflection response R̂ðx0; x000;ωÞ can be
recorded at x0 and its transmission response T̂ðxm; x000;ωÞ at
xm. Figure 2(b) shows that when an upgoing impulse is sent
into the dissipative medium from below at x0m, its reflection
response R̂ðxm; x0m;ωÞ can be recorded at xm and its
transmission response T̂ðx0; x0m;ωÞ at x0. Similar results
are obtained for the reflection and transmission responses
in the effectual medium.
The double-sided reflection and transmission responses

of the dissipative and the effectual medium can be put into a
scattering matrix. In the operator sense, the scattering
matrix of the effectual medium is the inverse of the
complex conjugate of the scattering matrix operator of
the dissipative medium. This leads to two equations for the
reflection and transmission responses in the effectual
medium in terms of the double-sided reflection and trans-
mission responses in the dissipative medium, given by

δðx0H − x00HÞ −
Z

∂D0

½R̂ðx0; x00;ωÞ�� ˆ̄Rðx0; x000;ωÞdx0

¼
Z

∂Dm

½T̂ðxm; x00;ωÞ�� ˆ̄Tðxm; x000;ωÞdxm; ð9Þ
Z

∂D0

½T̂ðx0; x0m;ωÞ�� ˆ̄Rðx0; x000;ωÞdx0

¼ −
Z

∂Dm

½R̂ðxm; x0m;ωÞ�� ˆ̄Tðxm; x000;ωÞdxm; ð10Þ

where ˆ̄Tðxm; x000;ωÞ denotes the transmission response from
a downgoing impulsive source at x000 observed at xm in the
effectual medium. From these two equations the reflection
and transmission responses in the effectual medium can be
obtained. The reflection response is used in the Marchenko
equations.
Numerical example.—The aim of the current method is

to form an image of the inside of a sample under test given
the measured reflection and transmission responses at two
sides of the sample. Ideally the image amplitude should
give the correct reflection amplitude of each interface
between the layers. In that case, the reflection amplitudes
can be used for further analysis to obtain the acoustic
impedance of each layer. To illustrate the method I give a
1D example of a synthesized ultrasonic experiment on earth

materials that could be carried out in a laboratory. The
model mimics a layered medium with dissipation in mass
density and compressibility in every layer using a Maxwell
model. Figure 3 shows the values for the wave velocity, the
mass density, and attenuation as a function of depth. The
source emits a Ricker wavelet with 400-kHz center
frequency. Because I use a Maxwell loss model, the
attenuation is given in dB per wavelength (λc) at the center
frequency of the source signal. Attenuation values around
0.3 dB=λ represent consolidated sands or clays, values
around 0.1 dB=λ represent soft rocks, such as sandstones
and siltstones, and values below 0.05 dB=λ represent
compacted rocks such as limestones, all common earth
materials. I have computed the reflection and transmission
responses at both sides of the layered medium. The source
and receiver are 15 mm above the first interface for
reflection measurements and a receiver is located at
20 mm below the bottom interface for the transmission
measurements, cf. Fig. 2(a). For the reflection and trans-
mission measurements with a source below the bottom
interface, the same distances are used, cf. Fig. 2(b). From
these measurements, the reflection response of the effectual
medium is computed from Eqs. (9) and (10). The two
reflection responses above the first interface are used to
solve for the focusing wave fields at all time steps. The time
of the first arrival is equal to half the measurement time. If
the correct amplitude would be used in the initial estimate
for the focusing wave field, the image would be perfect.
Such an estimate is difficult to obtain from the data;
therefore, it is more interesting to see what happens when
no loss is assumed in the initial estimate of the focusing
wave field.
For this example, first the focusing wave fields are

computed assuming a lossless medium as initial estimate
for the focusing wave field. Then, the Green’s functions are
computed and the image is formed at each time step using
Eq. (7) and keeping the value at zero time. This is done for the
dissipative and the effectual medium. Then the procedure as
described using Eq. (8) leads to the final image. Figure 4
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FIG. 3. Medium parameters of the model.
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shows twoMarchenko images (red dashed) together with the
exact image convolved with the Ricker wavelet as a function
of image time (solid black). Figure 4(a) shows the
Marchenko image obtained using Eq. (7) for the dissipative
medium and Fig. 4(b) shows the image obtained using the
compensation procedure. Figure 4(a) shows that the scheme
assuming no loss in the initial estimate for the focusing
function produces a clean image but with incorrect ampli-
tudes. The image in Fig. 4(b) is nearly perfect, with correct
reflection amplitudes and almost free from ghost images due
to multiple reflections in the data. This shows that amplitude
correction is indeed possible using amplitude information of
the images in the dissipative and effectual medium. To
demonstrate the improvement over existing schemes,
Fig. 5 shows two images, the conventional image (solid
blue) obtained using the correct velocitymodel and the image
obtained with the lossless Marchenko imaging scheme
(dashed red) of [14]. The conventional imaging scheme
does not apply any amplitude correction and images all
multiples in the data as primary reflections. For this reason,
the last three reflections that are clearly imaged in Fig. 4(b)
cannot be distinguished from the multiples in the image of
Fig. 5. The plot also shows that the image from the lossless
Marchenko scheme has improved amplitudes, because of
corrections from transmission effects, and the threemultiples
visible in the conventional image between 25 and 35 μs have

been attenuated. The lossless Marchenko scheme does not
correct for dissipation loss, which has two effects: the image
amplitudes deteriorate with increasing image time and later
multiples are imaged as primary reflection events, as can be
seen in the plot for image times larger than 60 μs.
In terms of practical applications, similar experiments

could be performed in the laboratory where both sides of a
specimen would be available for measurements [6], or for
medical purposes where measurements could be taken at
two sides of the body. For such configurations, the new
scheme is expected to perform better than existing methods.
In 1D, no model information is necessary to carry out these
steps. In 3D, some information is necessary to compute an
estimate of the time instant of the first arrival [1].
Conclusions.—I have derived two independent sets of

coupled single-sided Marchenko equations that can be
solved for focusing wave fields inside a heterogeneous
dissipative medium. These equations require as input the
single-sided reflection responses of the dissipative medium
and its corresponding effectual medium. The latter reflec-
tion response can be computed from reflection and trans-
mission responses measured above and below the
dissipative medium. To compute an image of the medium
with the aid of the Green’s functions pertaining to the
dissipative medium, the focusing wave fields in both types
of media need to be computed. The numerical example
shows that the method is capable of accounting for the
effect of realistic losses and can remove the effect of
multiple scattered waves from the image. This was done
without an estimate of the energy loss for the initial
estimate of the focusing wave field. The current method
has applications for nondestructive testing, medical imag-
ing, and laboratory tests of real rocks that are important for
hydrocarbon exploration; in all of these applications, the
material under test is accessible from two sides. The
method opens a new way to investigate how information
on dissipative media contained in measured data can be
used to produce a high-quality image, by accounting for
propagation and dissipation in reflection and transmission
as well as internal multiple scattering, with minimal a priori
knowledge of the material properties.
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FIG. 4. Numerical example with the exact image convolved with the Ricker wavelet (exact, solid black) and results from the new
scheme (dashed red) in (a) using Eq. (7) (MIl) and (b) with amplitude correction using Eq. (8) (MI).
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