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We study the propagation of light beams through optical media with competing nonlocal nonlinearities.
We demonstrate that the nonlocality of competing focusing and defocusing nonlinearities gives rise to self-
organization and stationary states with stable hexagonal intensity patterns, akin to transverse crystals of light
filaments. Signatures of this long-range ordering are shown to be observable in the propagation of light in
optical waveguides and even in free space.We consider a specific form of the nonlinear response that arises in
atomic vapor upon proper light coupling. Yet, the general phenomenon of self-organization is a generic
consequence of competing nonlocal nonlinearities, and may, hence, also be observed in other settings.
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Self-organization constitutes one of the most fascinating
phenomena appearing in nonlinear systems. During the
process, strong interactions among the system components
lead to the formation of spatial structures and long-range
ordering. This effect plays a crucial role in a broad context,
from biology [1–3], chemistry [4,5] and hydrodynamics [6]
to soft-matter physics [7–9]. In optics the spontaneous
formation of regular intensity patterns has been observed
almost 30 years ago [10], and since been explored in
various settings [11–14]. Common to all these experiments
is the requirement of an appropriate feedback mechanism,
provided, e.g., by an optical cavity or a single mirror that
retroreflects traversing light back into the medium, while
feedbackless pattern formation in a Kerr medium has been
observed [15] from far-field interference of small-scale
regular filaments. On the other hand, the formation of
spatial structures solely due to the nonlinear propagation of
light has attracted great interest over the past years [16,17].
Most prominently, optical solitons emerging from local
Kerr-type nonlinearities of various kinds have been actively
investigated [18–20] and play an important role for intense
light propagation [21] and potential applications to fiber
optics communication [22]. Nonlinearities can also cause
extended structures to emerge, e.g., from modulation
instabilities (MI) that drive a growth of broad-band density
modulations and ultimately lead to the formation of
randomly arranged filaments [23–26].
In this work, we show that self-organization into

spatially ordered patterns [see Fig. 1(a)] of unidirectionally
propagating light can occur in media with a spatially
nonlocal nonlinearity. Although the absence of any feed-
back mechanism in our system may be expected to prevent
the formation of extended patterns [27], we show that this is
not the case and regular patterns can arise from a suitably

designed nonlocality of the medium. This sets it apart from
previously studied systems [10–14], and as we will see
below, implies profound changes of the underlying physics,
including the threshold behavior for optical pattern
formation [28–30]. The effect rests upon a sign change
of the optical response in Fourier space [31], which in the
present case drives MI within a finite band of momenta
[see Figs. 1(c), 1(d)]. This condition provides a challenge
for most nonlinear optics experiments where nonlocality
typically arises from transport processes [32–38] that
naturally yield a sign-definite nonlinear response.
Overcoming this obstacle, we consider a combination of
a focusing and defocusing nonlinearity [see Fig. 1(b)] and
describe a physical realization of the proposed response
function in atomic vapor. We derive simple conditions for
the emergence of stable ordered states and show that
signatures of such “crystals” are observable in the propa-
gation of light through the medium.
Specifically, we study the evolution of a wave function

ψðr; zÞ, representing the slowly varying envelope of the
electric field component of a light beam. Its propagation is
governed by the nonlinear Schrödinger equation

i∂zψðr; zÞ ¼ −Δ⊥ψðr; zÞ þ UðrÞψðr; zÞ − i
l
ψðr; zÞ

−
Z

Rðjr − r0jÞjψðr0; zÞj2d2r0ψðr; zÞ; ð1Þ

with r and z denoting generalized transverse and longi-
tudinal (propagation) coordinates, respectively. The ampli-
tude ψðr; zÞ and all other parameters in Eq. (1) represent
dimensionless quantities as obtained from proper length
and time scaling of the specific realization given in the
Supplemental Material [39]. The parameter l is the linear
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absorption length and the external potential UðrÞ may
represent an additional optical waveguide. We consider a
response function of the cubic nonlinearity

RðrÞ ¼ αK0

�
r
σ

�
− K0ðrÞ − βδðrÞ; ð2Þ

that is composed of three terms. The first and the second term
describe a focusing and defocusing nonlocal nonlinearity,
respectively, while the third corresponds to a local defocus-
ing nonlinearity as given by the Dirac delta function, δðrÞ.
The parameter β > 0 represents its strength and K0 denotes
the modified Bessel function of the second kind. Scaling
with respect to the defocusing nonlinearity leaves two
parameters, describing the strength (α > 0) and spatial
range (0 < σ < 1) of the focusing nonlinear response
relative to that of the defocusing term [39]. While our
general findings do not depend qualitatively on the shape of
the nonlocal kernel, the function K0ðrÞ plays an important
role in diverse optical settings. For example, it describes
light propagation in nematic liquid crystals with orienta-
tional nonlinear response [40], and was used to model the
nonlinearity of thermal media [41,42]. Although most of
these situations only yield a single sign-definite response, a
combination of both appears possible [43,44].
Here, we suggest that the complete response function,

Eq. (2), can be realized in alkali metal vapor. One can
obtain a cubic Kerr nonlinearity whose nonlocal character
emerges from diffusive atomic motion. In fact, the for-
mation of nonlocal solitons due to a response function
∼K0ðrÞ in such systems has already been demonstrated
experimentally [35]. As we show in Ref. [39], the simulta-
neous coupling of light to near-resonant transitions involv-
ing two incoherently coupled hyperfine levels can give rise
to competing nonlinearities as given in Eq. (2). Choosing
the frequency detuning of the propagating light just in

between the corresponding hyperfine splitting yields a
blue and red detuned transition and, thereby, two nonlocal
nonlinearities of opposite sign. Moreover, the devised
approach naturally provides a third, local nonlinearity,
which plays a critical role for the emergence and stability
of regular patterns, as we discuss below.
To this end, it appears appropriate to first consider

UðrÞ ¼ l−1 ¼ 0. The aforementioned MI refers to linear
instability of plane wave solutions ψpwðr;zÞ¼A0expðiμzÞ
with respect to periodic modulations aðr;zÞ¼a1expðikrþ
λzÞþa�2expð−ikrþλ�zÞ [45], where μ ¼ A2

0

R
RðjrjÞd2r is

the propagation constant. Linearization in terms of the
perturbation amplitudes a1;2 then yields the growth rate, λ,

λ2 ¼ −k2ðk2 − 2I ~RðkÞÞ; ð3Þ
of a given mode with wave vector k, and I ¼ jA0j2 is the
plane wave intensity. The Fourier transform, ~RðkÞ, of the
response function Eq. (2) reads

~RðkÞ ¼ 2πασ2

1þ σ2k2
−

2π

1þ k2
− β: ð4Þ

Wherever ~RðkÞ > 0, one can find MI, i.e., a real and
positive growth rate λ, for a sufficiently large intensity, I , of
the initial plane wave solution. In particular, if ~Rð0Þ < 0

and ~RðkÞ changes sign at a finite value of k ¼ k0 > 0, MI
only occurs in a finite band of wavelengths < 2π=k0 [46].
Figure 1(d) shows a typical spectrum and illustrates the
onset of MI as I is increased above the critical intensity
IMI. The resulting wave number filtering is important as it
yields an additional length scale emerging from initial
white-noise perturbations which are typically present in
experiments. On the contrary, more common long-
wavelength MI requires overall focusing nonlinearities
[ ~Rð0Þ > 0] and includes arbitrarily small wave numbers

FIG. 1. (a) Where MI occurs in a finite momentum range and ordered intensity patterns (lower inset) are possible. The color coding for
α < αcr shows the minimum intensity for MI, while plane wave solutions remain stable for α > αcr. (b) Position [Eq. (2)] and
(c) momentum space [Eq. (4)] form of the nonlinear response function (solid line) arising from a combination of a nonlocal focusing
(dotted line), nonlocal defocusing (dashed-dotted line), and local defocusing nonlinearity (dashed line). Panel (d) shows the
corresponding dispersion relation, Eq. (3), of periodic perturbations with momentum k.
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in the instability interval. This results in an semi-infinite
band of unstable wavelengths, associated with random
filamentation and, ultimately, the formation of bright
solitons or collapse [47,48].
For our choice of response function, −λ2ðkÞ exhibits a

local maximum followed by a minimum [Fig. 1(d)], which
bears analogies to the known maxon-roton structure of
excitation spectra of superfluid helium [49,50] and studied
for Bose-Einstein condensates with finite-range inter-
actions [51,52]. The roton minimum and the associated
instability in quantum fluids may appear as a precursor to a
solid phase [53,54], but can also usher in a transition to a
modulated fluid described by a single-particle amplitude
ψ [52,55].
In order to further analyze the present system, we

consider the ground state of Eq. (1), i.e., the minimizer
of the Hamiltonian density,

H ¼ 1

V

Z
j∇⊥ψ stðrÞj2d2r

−
1

2V

ZZ
Rðr − r0Þjψ stðrÞj2jψ stðr0Þj2d2r0d2r; ð5Þ

in the limit of a large integration area V → ∞. Since we
are looking for a stationary solution, ψ st ¼ AstðrÞeiμz, the
Hamiltonian is only affected by the transverse profile
AstðrÞ. The analysis of Eq. (5) reveals a rich ground state
behavior, including plane waves, hexagonal intensities
patterns as well as bright soliton solutions. Figure 2(a)
illustrates the emergence of these different phases from
the plane wave solution as a function of the plane wave
intensity I and the strength β of the local defocusing
nonlinearity. For 0 < σ < 1 and α > 1, the nonlocal part of

the kernel Eq. (2) diverges to positive values as r → 0,
which inevitably leads to the existence of a bright soliton as
ground state under the sole action of the nonlocal non-
linearity. Fortunately, the additional local nonlinearity ∼β
tends to diminish this short-distance focusing behavior
and ultimately allows us to suppress the soliton solution
upon exceeding a critical local defocusing βcr. We can
estimate this critical value from below through a variational
analysis of the minimizer of Eq. (5), assuming a Gaussian
form of AstðrÞ (see Ref. [39] for further details). This
calculation yields a good estimate of the exact βcr obtained

from numerical simulations, e.g., βðvarÞcr ≈ 0.0654 and

βðnumÞ
cr ≈ 0.0678 in Fig. 2(a).
Having obtained βcr as a function of α and σ we can

calculate the critical intensity IMI necessary to induce finite-
kMI at the minimum value of β ¼ βcr. The result, shown in
Fig. 1(a), indeed yields an extended range of parameters
where a modulated ground state is possible without con-
tracting to a single bright soliton. We find that the transition
line which separates MI from the region where an initial
plane wave will remain stable for every value of I follows a
simple relation which can be derived from the following
argument. Noting that the nonlocal response asymptotically
decreases as 2πðα − 1Þ=k2 > 0 it needs to exhibit a local
minimumat k ¼ 0 in order to allow for a finite-k sign change
through the addition of the local defocusing nonlinearity.
Formally, this requirement corresponds to ∂2

k
~RðkÞjk¼0 > 0

and, thus, yields αcr ¼ σ−4. Alternatively, we can determine
the transition line by excluding the possibility of long-
wavelength MI which implies ~Rð0Þ ≤ 0. Since both criteria
are equivalent, their combination yields the critical
βcr ¼ 2πðσ−2 − 1Þ along the transition line. This expression
matches our numerical results and coincides with the
variational analysis described above (see Ref. [39]).
To determine the ground state ψgs we solve Eq. (1) for an

imaginary propagation coordinate (z → −iz) with periodic
boundary conditions and UðrÞ ¼ l−1 ¼ 0, starting from
a plane wave, ψðr; 0Þ ¼ I1=2 þ εðrÞ, perturbed by small
amplitude white noise, εðrÞ. Above the threshold intensity
Ihex < I we find that the ground state ψgs acquires
hexagonal intensity pattern as shown in Figs. 2(d) and
2(e). This threshold value Ihex is significantly smaller than
the critical intensity for MI. While the plane wave solution
remains stable for Ihex < I < IMI, it, consequently, ceases
to be the lowest-energy state in this intensity region. We can
detect the ground state transition bymonitoringHamiltonian
density H½ψgs� and propagation constant μ½ψgs� relative to
those of the plane wave solution ψpw. The found behavior,
shown in Fig. 2(b) is consistent with a first order phase
transition as expected for two-dimensional systems [56,57].
As a result, intensitymodulations in ψgs set in abruptly upon
crossing Ihex rather then growing continuously.
While MI, hence, represents a sufficient, but not

necessary criterion for structured ground states, the phase
transition occurs as a precursor of the instability and
does not take place in systems which do not feature

FIG. 2. (a) Phase diagram for α ¼ 1.4, σ ¼ 0.7 illustrating the
emergence of three different phases from the plane wave solution
as a function of I and β. (b) Difference in Hamiltonian density H
(solid line) and propagation constant μ (dashed line) between
plane wave solutions ψpw and numerically computed ground
states ψg versus plane wave intensity I (β ¼ 0.08). Pattern
formation at the threshold intensity Ihex is accompanied by a
jump in the propagation constant, and occurs well below the
critical intensity for MI. Exemplary ground states for different
plane wave intensities I obtained from imaginary propagation
(see text) are shown in (c)–(e).
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finite-wavelength MI. We also note that the intensity
patterns can neither be interpreted in terms of conventional
bright solitons, nor do they represent dark solitons since the
found state does not feature any phase structure which is
typical for the latter. These observations underline again the
importance of the competition between the nonlocal non-
linearities to observe the described phenomena.
Let us now study signatures of these stationary properties

in the propagation of light, that would potentially be
observable in experiments. We begin with the real space
propagation of Eq. (1) in a hollow-core optical waveguide,
which we model by a simple harmonic potential
UðrÞ ¼ ðr=4Þ2. As the initial condition, we choose a

Thomas-Fermi profile ψðr;0Þ¼ I1=2
ffiffiffiffiffiffiffiffiffiffiffi
1− r2

w2

q
þ εðrÞ, whose

width w ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−I ~Rð0Þ

q
is determined by the confining

potential, the intensity I, and ~Rð0Þ ¼ R
RðrÞd2r < 0.

Figure 3 shows intensity profiles obtained for different
input intensities I below and above IMI. While the former
case preserved the rotational symmetry and yields a nearly
stationary intensity profile [Fig. 3(a)], the higher intensity
results in the formation of regularly spaced filaments
[Fig. 3(b)]. Dynamically, pattern formation is preceded
by MI leading to rapid formation of filaments. Because
of the nonlocal nonlinearity and its overall defocusing
character the formed filaments experience effective repul-
sive interactions and eventually settle into a hexagonal
lattice structure. Note, that we have set l−1 ¼ 0 in
order to study the dissipationless propagation dynamics.
Nevertheless, ordering is still possible since the associated
Hamiltonian density is dissipated into phase gradients [39]
that predominantly emerge in the low-intensity regions
between the filaments [Fig. 3(c)].
In Fig. 4, we show the propagation dynamics for an input

beam ψðr; z ¼ 0Þ ¼ I1=2 exp ½− r4

w4� þ εðrÞ, with I ¼ 40

and w ¼ 500, for U ¼ 0 and l ¼ 5.3. Again one finds fast

filamentation, as indicated by the peak amplitude dynamics
shown in Fig. 4(c). Subsequently, the filaments start to form
short-range ordered structures. However, this self-organized
state cannot be sustained against intensity loss due to
absorption and beam spreading. It ultimately disintegrates
once the average intensity, Ī0ðzÞ ¼ V−1

0

R
V0
jψðr; zÞj2d2r,

in the central area, V0, approaches Ihex.
We finally want to relate these findings to the proposed

experimental realization in atomic media. As further
detailed in the Supplemental Material [39], the parameters
used in Figs. 3 and 4 can be obtained for a sodium vapor at
a density of 9 × 1013 cm−3 where incoherent hyperfine
pumping with a rate of 2π × 0.9 MHz transfers population
from the jF ¼ 1i to the jF ¼ 2i state, and vice versa with a
rate of 2π × 3.9 MHz. Coupling the light field detuned by
2π × 14 MHz from the D1 transition then yields α ¼ 1.4,
σ ¼ 0.7, and a dimensionless absorption length of l ¼ 5.3.
The dimensionless intensity I ¼ 40 then gives the reason-
able value of 300 W=cm2. For a diffusion constant of
30 cm2=s the dimensionless unit length corresponds to
10 μm, making the predicted patterns observable with
conventional imaging techniques. Generally, the number
of tunable parameters entails considerable flexibility,
allowing us to find viable experimental conditions for
other combinations of α and σ as well.
In summary, we have investigated the emergence of

crystalline intensity patterns due to a competition of non-
local optical nonlinearities with different signs and ranges.
The phenomenon was traced back to a first-order phase
transition between ground states of the underlying propa-
gation equation. Yet, we showed that it should be observ-
able in the unidirectional propagation of light, facilitated by
Hamiltonian density dissipation into phase gradients. We

FIG. 3. Guided light propagation for α ¼ 1.4, σ ¼ 0.7,
β ¼ 0.08, UðrÞ ¼ ðr=4Þ2, l−1 ¼ 0 and two different intensities
of (a) I ¼ 10 < IMI and (b),(c) I ¼ 20 > IMI after a propaga-
tion length of z ¼ 10. Panel (c) indicates the inhomogeneous
phase evolution accompanying the emergence of hexagonal
intensity patterns shown in (b). (a) Below IMI the intensity
profile develops a weak ring structure due to the initial noise.
See Ref. [39] for further details.

FIG. 4. Free propagation for α ¼ 1.4, σ ¼ 0.7, β ¼ 0.08,
U ¼ 0, l ¼ 5.3. During propagation regular intensity patterns
form in the beam center, as shown in the inset of (a). Panels
(b)–(e) show the propagation dynamics in this central region of
area V0 for different propagation lengths z ¼ 1 (b), 1.7 (c), 2.3
(d), and 3.7 (e). (f) Evolution of the peak amplitude, maxr jψ j, and
average intensity, Ī0, in the central area V0. See Ref. [39] for
further details.
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have devised a physical implementation in dilute atomic
vapor that realizes the proposed model. However, the
presented analysis also applies to other media in which
light propagation is adequately described by Eq. (1). We
hence expect this work to be relevant to such systems where
competing nonlocal nonlinearities may arise from different
transport mechanisms, including particle or heat diffusion
or reorientation of induced dipoles.
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(GENCI, Grants No. 2015-056129 and No. 2016-057594).
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